| 研究生: |
張瑞珍 Chang, Ruey-chen |
|---|---|
| 論文名稱: |
利用電荷汲引技術於具有 Hf-Silicate 閘極介電層互補式金氧半電晶體之量測分析 Characterization of ALD Hf-Silicate Gate Dielectrics CMOS Devices Using Charge Pumping Technology |
| 指導教授: |
王水進
Wang, Shui-jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 電荷汲引技術 、高介電係數 |
| 外文關鍵詞: | charge pumping, high-k |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在元件閘極氧化層厚度快速縮小的趨勢下,氧化層厚度薄至20Å以下時元件會因為直接穿遂效應而產生很大的閘極漏電流。因此,尋找高介電係數(High-k)閘極介電層材料以替代原先二氧化矽介電層,是當今非常重要的一個課題。然而在材料替換的過程中,諸多不可預期的問題開始產生如電荷捕獲(charge trapping)造成啟始電壓(threshold voltage)飄移與載子遷移率(mobility)的下降等,因此值得探討高介電係數閘極介電層元件其界面陷阱密度對於電性的影響。本論文我們選擇利用電荷汲引技術為架構發展出可以觀察High-k元件進行不同製程條件之後所產生的界面陷阱密度。我們發現使用二氧化矽結合氮氧矽酸鉿介電層元件比使用氮氧化矽與氮氧矽化鉿介電層元件具有較低的界面陷阱電荷、較薄的等效氧化層厚度。而因為氮氧化矽界面之介電層元件有較薄的物理厚度所以其閘極漏電流較高,而其具有較低的界面陷阱密度所以有較高的電子遷移速度。在我們的實驗中也探討氨氣和氮氣用於高介電係數閘極介電層材料電漿氮化的影響,發現氮氣是較好的選擇,因為氮氧矽酸鉿介電層材料中矽原子容易與氨氣中的氫作鍵結,但是鍵結不穩定而容易形成斷鍵的存在,而這樣的化學反應會對於電荷的捕捉及散射影響較為嚴重。最後探討元件電特性和熱退火的影響。我們發現經過在氮環境下850oC 60秒退火後的元件具有較低的界面陷阱密度並可減少氮氧矽化鉿之矽懸鍵與降低N≡N數量,結果指出使用氮氣電漿氮化再搭配熱退火的處理,可有效降低電荷被捕捉的機率降低漏電流以及提升載子移動率。
The aggressive CMOS device scaling has been reaching the physical limit of conventional SiO2 MOSFETs. When the dielectric thickness less than 20Å, the directly tunneling will induce higher leakage current. It is important to find a gate dielectric which could attain most of the merits of SiO2 and high temperature reliability. Essentially, such a candidate should be considered the impact of device characteristics (threshold voltage shift and mobility degradation ) by the charge trap.In this work, we have presented our recent results of HfSiON gate dielectric subjected to various nitridation and PNA treatments. The extracted effective trap density (Nit) of devices are based on charge pumping (CP) measurements. Effect of interface layer (IL) on the electrical characteristics of the HfSiON/IL high-k gate stacks and mobility degradation in nMOSFETs were analyzed and discussed. The IL thickness was found to have a profound effect on the leakage current reduction. The DI-O3 IL has thinner physical thickness than N2O Plasma IL .Since leakage current of the thin dielectric is governed by tunneling mechanism, even the DI-O3 chemical oxide can have better quality oxide interlayer on the Si interface as compared with N2O plasma oxidation interlayer. NH3 plasma can have better dissociation than N2 plasma. But the presence of residual hydrogen coming from NH3 gas has deleterious affects on the charge trapping behaviors of MOSFET devices. After N2 ambient at 850oC for 60s annealing, the N≡N bonds were almost completely eliminated from High-k nitrided film and leaving only strong Si-N bonds. Nitrogen incorporated Hf-silicate dielectric using N2 plasma nitridation with PNA is promising to improve film quality by reducing charge trapping characteristics, improved drain current and enhancing mobility.
[1]Wilk, Wallace, and Anthony, Appl. Phys. Rev., vol. 89, p. 10, 2001.
[2]J. Robertson and C. W. Chen, Appl. Phys. Lett., vol. 74, p. 1168, 1999.
[3]J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P.Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M.Rosamilia, Appl. Phys. Lett., vol. 77, p. 130, 2000.
[4]C.Hobbs et al., S 2-1, VLSI’ 2003
[5]E. H. Nicollian and J. R. Brews, “MOS Physics and Technology, ” John Wiley &Sons, 1982.
[6]K. F. Schuegraf and C. Hu, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation, ” IEEE Transactions on Electron Devices, vol. 41, p.761 May 1994.
[7]K. R. Hoffman, C. Werner, and G. Dorda, “Hot- Electron and Hole-Emission Effects in Short N-Channel MOSFET’s,” IEEE Transactions on Electron Devices, vol.32, p.69, May 1198.
[8]P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, “Consistent Modelfor the Hot-Carrier Degradation in N-Channel and P-Channel MOSFET’s, ” IEEE Transactions on Electron Devices, vol. 35, p.2194 1998,
[9]H. Wong, H. Iwai, “On the Scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors,” ELSEVIER Microelectronic Engineering, vol. 83, Issue. 10, pp. 1867-1904, 2006.
[10]G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on High-κ Dielectrics Reliability Issues,” IEEE Transactions on Device and Materials Reliability, vol. 5, NO. 1, pp. 5-19, 2005.
[11]N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “The Impact of Bias Temperature Instability for Direct-Tunneling Ultra-Thin Gate Oxide on MOSFET Scaling,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 73-74, 1999.
[12]K. F. Schuegraf and C. Hu, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapolation, ” IEEE Transactions on Electron Devices, vol.41, p.761, May 1994.
[13]K. R. Hoffman, C. Werner, and G. Dorda, “Hot- Electron and Hole-Emission Effects in Short N-Channel MOSFET’s,” IEEE Transactions on Electron Devices, vol. 32, p.691, 1985.
[14]P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, “Consistent Model for the Hot-Carrier Degradation in N-Channel and P-Channel MOSFET’s, ” IEEE Transactions on Electron Devices, vol.35, p.2194, 1998.
[15]K. T. San, and T. P. Ma, ”Determination of Trapped Oxide Charge in Flash EPROM’s and MOSFET’s with Thin Oxides, ” IEEE Electron Device Letters, vol.13,, p.439, August 1992.
[16]J. S. Bruglar and P. G. A. Jaspers, “Charge Pumping in MOS Devices, ” IEEE Transactions on Electron Devices, vol.16, p.297, 1969.
[17]G. Groeseneken, H. E. Maes, N. Bertran, and R. F. De Keersmaecker, ”A Reliable Approach to Charge-Pumping Measurements in MOS Transistors, ” IEEE Transactions on Electron Devices, Vol.31, p.42, 1984.
[18]W. Chen, A. Balasinski, and T. P. Ma , ”Lateral profiling of oxide charge and interface traps near MOSFET junction,” IEEE Transactions on Electron Devices, Vol.40, p.187, January 1993.
[19]W. Weber, M. Brox, R. Thewes, and N.S. Saks, “Hot-hole-induced negative oxide charges in n-MOSFET’s,” IEEE Transactions on Electron Devices, Vol.42,
[20]Dieter K. Schroder, “Semiconductor Material and Devices Characterization,” John Wiley & Sons, 1998.
[21]Etsumasa Kameda ,Toshihiro Matsuda, Masahiro Yasuda , Takashi Ohzone“Interface state density in n-MOSFETs with Si-implanted gate oxide measured by subthreshold slope analysis, Solid-State Electronics, vol. 43,pp. 565-573, 1999.
[22]J.-P.Han,E.M.Vogel, E.P.Gusev, C.D’Emic, C.A.Richter, D.W.Heh, J.S.Suehle“Energy Distribution of Interface Traps in High-K Gated MOSFETs,”
[23]Rino Choi, Chang Seok Kang, Byoung Hun Lee, Katsunori Onishi, Renee Nieh, Sundar Gopalan, Easwar Dharmarajan, and J. C. Lee, “High-Quality Ultra-thin HfO2 Gate Dielectric MOSFETs with TaN Electrode and Nitridation Surface Preparation,” IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 15-16, 2001.
[24]M. A. Quevedo-Lopez, P.D. Kirsch, S. Krishnan, H. N. Alshareef, J. Barnett,H. R. Harris, A. Neugroschel, F. S. Aguirre-Tostado, B. E. Gnade, M. J. Kim,R. M. Wallace and B. H. Lee, “Systematic Gate Stack Optimization to Maximize Mobility with HfSiON EOT Scaling,” IEEE Solid-State Device Research Conference, pp. 113-116, 2006.
[25]K. Torii, Y. Shimamoto, S. Saito, O. Tonomura, M. Hiratani, Y. Manabe, M. Caymax, and J.W. Maes, “The mechanism of mobility degradation in MISFETs with Al O gate dielectric,” in Symp. VLSI Tech. Dig.,pp. 188–189, 2002.
[26]M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with high-k insulator: The role of remote phonon scattering,” J. Appl. Phys., vol. 90, no. 9, pp. 4587–4608, 2001.
[27]E. P. Gusev, D. A. Buchanan, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H.Okorn-Schmidt, C.D’Emic, P.Kozlowski, K. Chan, N. Bojarczuk, and L.-A. Ragnarsson, “Ultrathin high-k gate stacks for advanced CMOS devices,” in IEDM Tech. Dig.,pp. 451–454, 2001.
[28]W. J. Zhu, T. P. Ma, S. Zafer, and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, pp. 597–599, Dec. 2002.
[29]A. Kerber, E. Cartier, L. A. Ragnarsson, M. Rosmeulen, L. Pantisano, R. Degraeve, Y. Kim, and G. Groeseneken, “Direct measurement of the inversion charge in MOSFETs: Application to mobility extraction in alternative gate dielectrics,” in Symp. VLSI Tech. Dig., pp. 159–160, 2003.
[30]J.-P. Han, E. M. Vogel, E. P. Gusev, C. D’Emic, C. A. Richter, D. W. Heh, and J. S. Suehle, “Energy distribution of interface traps in high-k gated MOSFETs,” in Symp. VLSI Tech. Dig., pp. 161–162, 2003.
[31]G. V. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, “A reliable approach to charge pumping measurements in MOS transistors,” IEEE Trans. Electron Devices, vol. ED-31, pp. 42–53, Jan. 1984.
[32]P. Heremans, J. Witters, G. V. Groeseneken, and H. E. Maes, “Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation,” IEEE Trans. Electron Devices, vol. 36, pp.1318–1335, Oct. 1989.
[33]C. E. Weintraub, E. M. Vogel, J. R. Hauser, N. Yang, and V. Misra, “Study of low-frequency charge pumping on thin stated dielectrics,” IEEE Trans. Electron Devices, vol. 48, pp. 2754–2762, Nov. 2001.
[34]B Guillaumot et al, IEEE-IEDM Tech. Dig. 355, 2002.
[35]G-W. Lee et al. Appl. Phys. Lett. Vol. 81, p. 2050, 2002.
[36]E.P. Gusev, et al. IEEE-IEDM Tech. Dig. 451, 2000.
[37]E.M.Vogel et al. IEEE Trans. Electr. Dev. 47, 601, 2000.
[38]E. M. Vogel, W. K. Henson, C. A. Richter, and J. S. Suehle, “Limitation of conductance to the measurement of the interface state density of MOS capacitors with tunneling gate dielectrics,” IEEE Trans. Electron Devices, vol. 47, pp. 601–608, May 2000.
[39]J. H. Stathis, et al., IEEE Transactions on Device and Materials Reliability, p.43, 2001.
[40]P. D. Kirsch, J. H. Sim, S. C. Song, S. Krishnan, J. Peterson , H.-J Li, M. Quevedo-Lopez, C. D. Young, R. Choi, N. Moumen, P. Majhi, Q. Wang, J. G.Ekerdt, G. Bersuker and B. H. Lee, “Mobility Enhancement of High-κ Gate Stacks Through Reduced Transient Charging,” IEEE Solid-State Device Research Conference. pp. 367-370, 2005.
[41]S. Ogawa, M. Shimaya, and N. Shiono, “Interface-Trap Generation at Ultrathin SiO2 (4-6nm)-Si Interfaces during Negative-Bias Temperature Aging,” Journal of Applied Physics, Vol. 77, Issue. 3, pp. 1137-1148, 1995.
[42]CR Parthasarathy, M. Denais, V. Huard, G. Ribes, E. Vincent, A. Bravaix,“Characterization and Modeling NBTI For Design-In Reliability,” IEEE International Integrated Reliability Workshop Final Report, pp. 158-162, 2005.
[43]S. Chakravarthi, A.T. Krishnan, V. Reddy, C.F. Machala and S. Krishnan, “A Comprehensive Framework For Predictive Modeling of Negative Bias Temperature Instability,” IEEE Annual International Reliability Physics Symposium, pp. 273-282, 2004.