| 研究生: |
劉家齊 Liu, Chia-Chi |
|---|---|
| 論文名稱: |
應用FLOW-3D模擬橋墩周圍流場及底床沖刷之研究 Application of Flow-3D on flow field and scour simulation around a bridge pile |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 橋墩沖刷 、FLOW-3D 、橋墩周圍流場 、變量流 |
| 外文關鍵詞: | scour depth, FLOW-3D, flow field, transient flows |
| 相關次數: | 點閱:134 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當水流經過橋墩時於橋墩周圍會產生渦流現象,進而造成河床的沖刷,甚至危害橋墩的安全。然而台灣地區降雨型態具高強度及長延時之特性,因此形成數種形式的流量歷線,其對於橋墩周圍流場特性與沖刷將產生不同之影響。本研究利用三維數值模擬軟體(FLOW-3D)模擬橋墩周圍流場及沖刷之情形,首先以定量流流況下非均勻橋墩沖刷之模型試驗對FLOW-3D數值模式進行驗證,結果說明FLOW-3D數值模式可以合理模擬橋墩沖刷情形,並進一步探討定床與動床流場分布差異,其模擬結果顯示,動床配置下的流場分布可能受到動床變化影響,於橋墩周圍流速較小且較為混亂。此外,本研究針對不同流量歷線模擬橋墩周圍局部沖刷差異進行探討,其中流量歷線形式包含一種定量流、五種單峰型變量流(分為總水量相同與總延時相同)、三種多峰型變量流(其中兩種為雙峰型變量流)。根據單峰型模擬結果顯示,在總水量相同條件下,尖峰流量的大小將影響沖刷深度;總延時相同條件下,沖刷深度受總水量影響。接著本研究針對兩種不同尖峰流量之雙峰型變量流進行探討,高尖峰流量之組別在兩個峰值附近各沖刷約總沖刷深度的50%;低尖峰流量之組別則在到達第二個峰值附近方產生較大沖刷深度。最後多峰型變量流(固定總延時與總水量)的沖刷模擬結果顯示,達尖峰流量次數增加,河床最終沖刷深度也較大。雙峰型較單峰型變量流增加了總沖刷深度的22.1 %,但四峰型變量流之最終沖刷深度僅增加34.6 %,可能因流量超過泥砂臨界啟動速度時會產生一般沖刷之現象,造成沖刷過程中同時產生泥砂回填,此現象因達尖峰流量的次數增加而漸趨明顯,於第三個及第四個洪水波產生後各自回填了約總沖刷深度的2 %與17 %,且可能受到流量變化迅速影響,起始沖刷時間較單峰及雙峰型歷線延遲約30秒,至第三個尖峰流量產生時方有明顯下向刷深情形。
Taiwan is periodically disturbed by typhoon storms that usually characterize high intensity and long duration, causing different types of hydrograph in river channels influencing the characteristics of scours around bridge piers. This study used a three-dimensional fluid dynamics model (i.e., FLOW-3D) to simulate the characteristics of scouring around the bridge piers involved in various hydrographs.
As a result, the scour modeling around the bridge pier shows that the magnitude of discharge peaks and the amount of water discharges, respectively, control scour depth based on the same amount of water discharges and the same scouring duration. Moreover, the high double peaks cause 50% of total scour depth at each peak but the low double peaks generate significant scour depth only at the second peak. Moreover, based on the same simulation period (200s) and total water volume (1.28 m3), this study also simulated riverbed scouring affected by single, double and quadruple flood waves. Results indicate that the more the number of flood waves, the greater the scour depth; Moreover, quadruple flood waves lead to a factor of 1.35 increase in final scour depth under single flood wave; riverbed scouring always concentrates on the rising limbs for single or multiple flood waves. In addition, the forth flood wave of quadruple flood waves shows an evident sediment refill process (about 17%) on riverbed.
1. 丁嘉賢(2009),「土石流撞擊防砂壩力學特性試驗研究」,國立成功大學水利及海洋工程系博士論文。
2. 石棟鑫(2001) ,「台灣地區颱風雨降雨型態之分析研究」,國立中央大學土木工程研究所碩士論文。
3. 徐郁超(2014),「高筒式旋流漏斗排砂器水流特性及泥砂去除率之研究」,國立成功大學水利及海洋工程系博士論文。
4. 張文鎰(2002),「圓形橋墩局部沖刷之模擬與試驗驗證」,國立臺灣大學土木工程學研究所博士論文。
5. 張藝馨(2000),「不均勻圓形橋墩之局部沖刷研究」,中央大學土木工程研究所碩士論文。
6. 陳泳錦(2008),「定量流流況下水深對非均勻橋墩局部沖刷影響之研究」,逢甲大學水利工程研究所碩士論文。
7. 陳建宇(2007),「環圈堆保護橋墩之試驗及其三維流場之數值模擬」,國立成功大學水利及海洋工程學系研究所碩士論文。
8. 黃聰憲(2007),「漏斗式排砂器水流特性及排砂效率之試驗研究」,國立成功大學水利及海洋工程學系研究所碩士論文。
9. 楊政翰(2008),「FLOW-3D應用於土石流防砂壩前流場及衝擊力」,國立成功大學水利及海洋工程學系研究所碩士論文。
10. 詹錢登,徐郁超,陳建宇,黃聰憲(2011),「橋墩前設置環圈堆保護工周圍流場特性之數值模擬分析」,臺灣水利,第59卷第2期,第19-32頁,台灣
11. 褚懷宇(2010),「波浪與複合式透水結構物交互作用之研究」,國立台灣海洋大學河海工程學系研究所碩士論文。
12. 蔡坤霖(2006),「定量流流況下非同心圓柱型橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
13. 鄭人豪(2007),「變量流流況下非同心圓柱型橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
14. 蕭凱文(2014),「應用FLOW-3D模擬斜坡矩形束縮渠道之斜震波研究」,國立成功大學水利及海洋工程系碩士論文。
15. 賴堅戊(2009),「波浪於粗粒徑斜坡底床傳遞之試驗與數值研究」,國立成功大學水利及海洋工程學系研究所博士論文。
16. Breusers, H. N. C., Nicollet, G. and Shen, H. W. (1965). “Local Scour around Cylindrical Piers.” Journal of Hydraulic Research, 15(3), pp. 211-252.
17. Chiew, Y. M. (1992). “Scour Protection at Bridge Piers.” Journal of Hydraulic Engineering, ASCE, 118(9), pp. 1260-1269.
18. Dargahi B. (1990). “Controlling mechanism of local scouring.” Journal of Hydraulic Engineering, ASCE, 116(10), pp. 1197-1214.
19. Das, S., and Mazumdar, A. (2013). “Comparison of Characteristics of Horseshoe Vortex at Circular and Square Piers.” Research Journal of Applied Sciences, Engineering and Technology 5(17), pp. 4373-4387.
20. Dey, S. and Raikar, R.V. (2007). “Characteristics of horseshoe vortex in developing scour holes at piers.” Journal of Hydraulic Engineering, ASCE ,133(4), pp. 399-413.
21. Esmaeili, T., and Sumi, T. (2013). “Application of steady flows for simulating the local scour depth under time varying flows.” Advances in River Sediment Research,ISBN 978-1-138-00062-9
22. Guo, J. (2002). Hunter Rouse and Shields diagram. 1th IAHR-APD Congress, 2, pp. 1069-1098.
23. Harlow, F.H. and Nakayama, P.I. (1967). “Turbulence Transport Equations.” Physical of Fluids, 10, pp. 2323 .
24. Hirt, C. W. and Nichols, B. D. (1981). “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries.” Journal of computational physics, 39, pp. 201-255.
25. Hirt, C. W. and Sicilian, J. M. (1985), “A porosity technique for the definition of obstacles in rectangular cell meshes,” Flow Science, Inc, Los Alamos, New Mexico.
26. Imamoto H., and Ohtoshi, K. (1987). “Local Scour around a Non-uniform Circular Pier.” Proc., IAHR Congress, Lausanne, Switzerland, pp.304-309.
27. Jain S. C. and Fischer, E. E. (1980). “Scour Around Bridge Piers at High Flow Velocities.” Journal of Hydraulic Engineering, ASCE, 106(11), pp. 1827-1842.
28. Khosronejad, A., Kang, S. and Sotiropoulos, F. (2012). “Experimental and computational investigation of local scour around bridge piers.” Advances in Water Resources, 37, pp.73-85.
29. Kleinhaus, M.G. (2002). “Sort out sand & gravel: sediment transport and deposition in sand-gravel bed rivers.” Universitaat Utrecht.
30. Mastbergen, D.R. and Von den Berg, J.H. (2003). “Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons.” Sedimentology, 50 , pp. 625-637.
31. Melville, B.W., and Raudkivi, A.J. (1977). “Flow characteristics in local scour at bridge piers.” J. Hydraul. Res., 15(4), pp. 373-380.
32. Raudkivi, A. J., (1986). “Functional Trends of Scour at Bridge Piers.” Journal of Hydraulic Engineering, ASCE, Vol.112(1), pp.1-13.
33. Raudkivi, A.J., and Ettema, R. (1983). “Clear-water scour at cylindrical piers.” J. Hydraul. Eng., 109(3), pp. 338-350.
34. Richardson, J.E., and Panchang, V.G. (1998). “Three-dimensional simulation of scour-inducing flow at bridge piers.” Journal of Hydraulic Engineering, ASCE, 124(5), pp. 530-540.
35. Rodi, W. (1980). “Turbulence Models and Their Application in Hydraulics - A State of the Art Review.” International Association of Hydraulic Research publication .
36. Roulund, A., Sumer, B.M., Fredsoe, J., and Michelsen, J. (1999). “3D mathematical modelling of scour around a circular pile in current.” Proc., 7th Int. Symposium on River Sedimentation and 2nd Int. Symposium on Environmental Hydraulics‘98, Hong Kong.
37. Soulsby, R. (1997). Ch. 9: Bedload transport. In Dynamics of Marine Sand. London: Thomas Telford Publications.
38. Van Rijn, L. C. (1984). Sediment transport, Part I: Bed load transport. Journal of Hydraulic Engineering , 110, No. 10.