簡易檢索 / 詳目顯示

研究生: 葉士億
Ye, Shi-Yi
論文名稱: 溶膠凝膠法製備應用於電阻式記憶體之NiTiO3薄膜
Research of Sol-Gel Derived NiTiO3 Thin Films for RRAM Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 溶膠凝膠法NiTiO3薄膜電阻轉換特性電阻式記憶體
外文關鍵詞: Sol-gel, NiTiO3, RRAM, thin films
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以溶膠凝膠法在ITO玻璃基板上塗佈NiTiO3薄膜。根據XRD顯示NiTiO3為非晶態 (Amorphous)。實驗的第一部分主探討薄膜在未退火的情況下的電阻開關特性表現,我們以Al和Ti做為上電極,透過量測可以發現以Al作為上電極,有單極和雙極兩種電阻開關操作,在單極操作下可以發現Ron/Roff值雖然比較大但是在操作次數上只有40次而且操作電壓變化較大,雙極操作上可以有比較多的操作次數以及更均勻的操作電壓和高低阻值,會有不同的電阻開關特性主要是由不同的Reset機制所導致。以Ti作為上電極可以發現只有雙極操作下才具有電阻開關特性,且 Ron/Roff值小於10,推測是因為上下電極的功函數差所導致。實驗的第二部分我們選擇以表現較好的Al作為上電極和雙極操作模式進行退火的分析,分別進行200 oC、300 oC、400 oC退火,可以發現在退火200 oC下有最高的操作次數,Ron/Roff值也較大,由於退火後氧空缺會被填補,退火後可以發現Vset都比在未退火的情形下更為浮動,而300 oC、400 oC退火下電阻開關特性開始衰退。

    In this work, NiTiO3 thin film in metal-insulator-metal stacks was investigated. The NiTiO3 and top electrode was deposited on ITO by Spinning Coating and e-beam, respectively. Al and Ti were deposited as top electrode respectively. The coexistence of both the unipolar and the bipolar RS mode is observed for the Al/NiTiO3/ITO device. On the other hand, there is only unipolar RS mode is observed for the Ti/NiTiO3/ITO. Then, we chose the Al/NiTiO3/ITO device to analyze the film annealed with different temperature. Through the analysis of XPS, further understanding on the resistivity of our device can be studied. By assuming that the conductive filaments can be mostly controlled by the oxygen vacancies. By different annealing temperature, we can control the quantity of oxygen vacancies in NiTiO3 layer. The effects of the different RS mode and annealing temperature of NiTiO3 will be discussed.

    中文摘要 I 英文摘要 III 表目錄 XXXII 圖目錄 XXXIII 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧 3 2.1 NiTiO3材料 3 2.1.1 NiTiO3基本介紹 3 2.2非揮發性記憶體介紹 5 2.2.1鐵電記憶體 (FeRAM) 6 2.2.2相變化記憶體 (PRAM) 7 2.2.3磁阻式記憶體 (MRAM) 8 2.2.4電阻式記憶體 (RRAM) 9 2.3電阻式隨機存取記憶體 (RRAM) 10 2.4電阻轉換機制 14 2.4.1燈絲理論 (Conductive filament) 14 2.4.2介面導通機制 18 2.4.3離子遷移機制 (Ion migration) 19 2.5漏電流傳導機制 21 2.5.1穿隧 (tunneling) 21 2.5.2蕭特基發射 (Schottky emission) 24 2.5.3空間電荷限制電流傳導 (Space Charge Limited Current,SCLC) 25 2.5.4普爾-法蘭克發射 (Poole-Frenkel Emission) 27 2.5.5歐姆接觸 (Ohmic Contact) 28 第三章 實驗流程與儀器設備 30 3.1實驗流程 30 3.1.1藥品 30 3.1.2樣品製備 31 3.2實驗設備 34 3.2.1電子秤 34 3.2.2磁石攪拌機 34 3.2.3旋轉塗佈機 34 3.2.4熱板 35 3.2.5爐管 35 3.3分析儀器 36 3.3.1多功能X光薄膜繞射儀 (GIAXRD) 36 3.3.2場發射掃描式電子顯微鏡 (FE-SEM) 36 3.3.3半導體參數分析儀 (Semiconductor Device Analyzer Mainframe) 37 3.3.4化學分析電子光譜儀 (ESCA) 38 第四章 結果與討論 39 4.1 薄膜分析 39 4.1.1薄膜剖面分析 39 4.1.2薄膜晶相分析 41 4.2不同電極對電阻轉換特性的影響 42 4.2.1未退火Al/NiTiO3/ITO電阻轉換特性 42 4.2.2未退火Ti/NiTiO3/ITO電阻轉換特性 49 4.2.3綜合分析不同電極對電阻轉換特性之影響 53 4.3不同退火溫度下之Al/NiTiO3/ITO電阻轉換特性 58 4.3.1 Al/NiTiO3/ITO退火200oC之電阻轉換特性 58 4.3.2 Al/NiTiO3/ITO退火300oC之電阻轉換特性 61 4.3.3 Al/NiTiO3/ITO退火400oC之電阻轉換特性 63 4.3.4綜合比較不同Al/NiTiO3/ITO在不同退火溫度下之影響 65 第五章 結論 73 參考文獻 74

    [1] M. Lanza, "A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope", Materials, vol. 7, no. 3, pp. 2155-2182, 2014
    [2] V. Kannan, V. S. Kumar, and J. K. Rhee, J. Phys. D: Appl. Phys. 46, 095301 (2013).
    [3] Q. Zuo, S. Long, S. Yang, Q. Liu, L. Shao, Q. Wang, S. Zhang, Y. Li, Y. Wang, M. Liu, IEEE Electron Device Lett. 31 (2010) 344–346.
    [4] Rodrigues AN, Santos YP, Rodrigues CL, Macedo MA.Al2O3 thin film multilayer structure for application in RRAM devices. Solid State Electron 2018;149:1-5.
    [5] C. Ye et al., “Low-power bipolar resistive switching TiN/HfO2/ITO memory with self-compliance current phenomenon,” Appl. Phys. Express, vol. 7, no. 3, pp. 034101-1–034101-4, Mar. 2014. doi: 10.7567/APEX.7.034101.
    [6] Kim S, Moon H, Gupta D, Yoo S and Choi Y 2009 IEEE Trans. Electron Devices 56 696
    [7] W.C. Chien, Y.C. Chen, F.M. Lee, Y.Y. Lin, E.K. Lai, Y.D. Yao, C.Y. Lu, Jpn J. Appl. Phys. 50 (2011) 04DD11.
    [8] L. Zhu, J. Zhou, Z. Guo and Z. Sun, "An overview of materials issues in resistive random access memory", Journal of Materiomics, vol. 1, no. 4, pp. 285-295, 2015.
    [9] Z. Tang, Z. Zhou, and Z. Zhang, ‘‘Experimental Study on the Mechanism of BaTiO3-Based PTC–CO Gas Sensor,’’ Sens. Actuat. B, 93, 391–5 (2003).
    [10] M. Siemons and U. Simon, ‘‘Gas Sensing Properties of Volume-Doped CoTiO3 Synthesized via Polyol Method,’’ Sens. Actuat. B, 126, 595–603 (2007).
    [11] Q. Zhu, W. Y. Shih, and W. H. Shih, ‘‘Real-Time, Label-Free, All-Electrical Detection of Salmonella Typhimurium Using Lead Titanate Zirconate/Goldcoated Glass Cantilevers at Any Relative Humidity,’’ Sens. Actuat. B, 125, 379– 88 (2007).
    [12] G. Radno´ czi, P. B. Barna, M. Adamik, Z. Cziga´ny, J. Ariake, N. Honda, and K. Ouchi, ‘‘Growth Structure of Thin Films for Perpendicular Magnetic Recording Media,’’ Cryst. Res. Technol., 35 [6–7] 707–11 (2000).
    [13] Z.D Huang, T.T. Zhang, H. Lu, et al., GRain-boundary-rich mesoporous NiTiO3 Micro-prism as high tap-density, super rate and long life anode for sodium and lithium ion batteries, Energy Storage Mater. 13 (2018) 329-339.
    [14] D. Jeong, R. Thomas, R. Katiyar, J. Scott, H. Kohlstedt, A. Petraru and C. Hwang, "Emerging memories: resistive switching mechanisms and current status", Reports on Progress in Physics, vol. 75, no. 7, p. 076502, 2012.
    [15] J. Meena, S. Sze, U. Chand and T. Tseng, "Overview of emerging nonvolatile memory technologies", Nanoscale Research Letters, vol. 9, no. 1, p. 526, 2014.
    [16] D. Wouters, R. Waser and M. Wuttig, "Phase-Change and Redox-Based Resistive Switching Memories", Proceedings of the IEEE, vol. 103, no. 8, pp. 1274-1288, 2015.
    [17] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Rajendran, M. Asheghi and K. Goodson, "Phase Change Memory", Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.
    [18] F. Pan, S. Gao, C. Chen, C. Song and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance", Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
    [19] D. Ielmini, "Resistive switching memories based on metal oxides: mechanisms, reliability and scaling", Semiconductor Science and Technology, vol. 31, no. 6, p. 063002, 2016.
    [20] A. Sawa, "Resistive switching in transition metal oxides", Materials Today, vol. 11, no. 6, pp. 28-36, 2008.
    [21] Y. Huang, Z. Shen, Y. Wu, M. Xie, Y. Hu, S. Zhang, X. Shi and H. Zeng, "CuO/ZnO memristors via oxygen or metal migration controlled by electrodes", AIP Advances, vol. 6, no. 2, p. 025018, 2016.
    [22] E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey", Electronics, vol. 4, no. 3, pp. 586-613, 2015.
    [23] 17. F. Chiu, "A Review on Conduction Mechanisms in Dielectric Films", Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014.
    [24] X. Wu, H. Xu, Y. Wang, A. Rogach, Y. Shen and N. Zhao, "General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion", Semiconductor Science and Technology, vol. 30, no. 7, p. 074002, 2015.
    [25] U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, IEEE Trans. Electron Devices 56 (2009) 186–192.
    [26] C. Cagli, F. Nardi, D. Ielmini, IEEE Trans. Electron Devices 56 (2009) 1712–1720.
    [27] Y.W. Dai, L. Chen, W. Yang, Q.Q. Sun, P. Zhou, P.F. Wang, S.J. Ding, D.W. Zhang, F. Xiao, Complementary resistive switching in flexible RRAM devices, IEEE Electron. Device Lett. 35(2014) 915-917.
    [28] B. Gao, J. F. Kang, Y. S. Chen, F. F. Zhang, B. Chen, P. Huang, L. F. Liu, X. Y. Liu, Y. Y. Wang, X. A. Tran, Z. R. Wang, H. Y. Yu, and A. Chin, “Oxide-based RRAM: Unified microscopic principle for unipolar and bipolar switching,” in IEDM Tech. Dig., 2011, pp. 17.4.1–17.4.4.
    [29] B. Gao, B. Sun, H. Zhang, L. Liu, X. Liu, R. Han, J. F. Kang, and B. Yu, “Unified physical model of bipolar oxide-based resistive switching memory,” IEEE Electron Device Lett., no. 12, pp. 1326–1328, Dec. 2009.
    [30] Lee K J, Wang L W, Chiang T K and Wang Y H 2015 Effects of electrodes on the switching behaviour of strontium titanate.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE