| 研究生: |
任喬安 Ruiz, Jorge Ruiz |
|---|---|
| 論文名稱: |
陣列模式對奈米摩擦發電機性能的影響與其在震盪感測器上的應用 The Impact of Array Modes on the Performance of Triboelectric Nanogenerators and Their Application in Vibration Sensors |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 摩擦電發電機 、陣列 、振動感測器 、NxN |
| 外文關鍵詞: | Triboelectric Nanogenerators, Array, vibrations sensors, NxN |
| 相關次數: | 點閱:34 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於在收集機械能量和作為振動感測器方面具有多功能的摩擦電發電機(TENGs)引起了相當大的關注。本研究調查了具有N×N陣列表面結構的TENGs的性能,並探索了這些結構對TENGs作為振動感測器的影響。TENGs中的陣列模式是由相鄰單元之間的機械耦合引起的,導致複雜的振動模式和改變的輸出特性。了解和控制陣列模式對於優化TENGs作為振動感測器的性能至關重要。陣列模式的存在顯著影響關鍵性能指標,包括頻率響應範圍以及產生的電信號的幅度和波形。這些影響在設計和優化基於TENG的振動感測系統時需要仔細考慮。本研究通過兩個測試來研究TENGs在陣列模式下的行為。這些測試是自行開發的落地測試和氣動激勵測試。使用CO2雷射加工和聚二甲基矽氧烷(PDMS)注模技術製作了具有462.3微米形態的NxN陣列。此TENG的性能與六種不同的陣列結構進行了比較:1×1、2×2、3×3、4×4、5×5和6×6。在7 Hz時,這些陣列結構所達到的開路電壓值分別為25.6 V、20.9 V、27.9 V、19.8 V、16.95 V和23.1 V。此外,振動感測器的結果表明,陣列TENG能夠檢測高頻率(超過10 Hz)的振動。此外,最佳的NxN陣列TENG取決於特定的應用需求。例如,當施加較低的力時,較高的陣列TENG配置表現更好。這些研究結果為我們對TENGs的功能性提供了有價值的見解,並且揭示了其在真實情境中的潛在應用。總結來說,本研究強調了陣列表面結構對TENG作為振動感測器性能的影響,並展示了陣列模式對頻率響應範圍、電信號特性和感測能力的影響。這些研究結果有助於更好地理解TENG的運作原理,並指導TENG在各種真實應用中的設計和應用實施。
Triboelectric nanogenerators (TENGs) have garnered significant attention as versatile devices for harvesting mechanical energy and as vibration sensors due to their inherent sensitivity. This research investigates the performance of TENGs with an array surface structure of NxN and explores the effects of these structures on TENGs as vibration sensors. Array modes in TENGs arise from the mechanical coupling between neighboring units, resulting in complex vibrational patterns and altered output characteristics. Understanding and controlling array modes are crucial for optimizing TENG performance as vibration sensors. The presence of array modes significantly affects key performance metrics, including the frequency response range and the magnitude and waveform of generated electrical signals. These effects necessitate careful consideration in the design and optimization of TENG-based vibration sensing systems. This study examines the behavior of TENGs under an array mode through two tests: a self-developed drop test and a pneumatic actuation test. A laser processed NxN array with a morphology of 462.3 µm was fabricated using CO2 laser processing and Polydimethylsiloxane (PDMS) pour molding technology. The performance of this TENG was compared with six different array structures: 1x1, 2x2, 3x3, 4x4, 5x5, and 6x6. The open circuit voltage values achieved for these array structures were 25.6 V, 20.9 V, 27.9 V, 19.8 V, 16.95 V, and 23.1 V, respectively at 7 Hz. Furthermore, the results of the vibration sensors indicate that the array TENG was capable of detecting vibrations at high frequencies over 10 Hz. Moreover, the optimal NxN array TENG varied depending on the specific application requirements. For instance, when a low force is applied, a higher array TENG configuration performs better. These findings provide valuable insights into the functionality of TENGs and their potential application in real-world scenarios. In conclusion, this research highlights the influence of array surface structures on TENG performance as vibration sensors. It demonstrates the effects of array modes on frequency response range, electrical signal characteristics, and sensing capabilities. The findings contribute to a better understanding of TENG operation and inform the design and implementation of TENGs in diverse real-world applications.
[1] T. Quan, Y. Wu, & Y. Yang, "Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy, " Nano Research, vol. 8(10), pp. 3272-3280, 2015.
[2] L. Liu, Q. Shi, & C. Lee, "A novel hybridized blue energy harvester aiming at all-weather IoT applications, " Nano Energy, vol. 76, pp. 105052, 2020.
[3] C. Rodrigues, A. Gomes, A. Ghosh, A. Pereira, & J. Ventura, "Power-generating footwear based on a triboelectric-electromagnetic-piezoelectric hybrid nanogenerator, " Nano Energy, vol. 62, pp. 660-666, 2019.
[4] J. H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S. W. Kim, & J. H. Kim. "All-in-one energy harvesting and storage devices, " Journal of Materials Chemistry A, vol. 4(21), pp. 7983-7999, 2016.
[5] K. H. Ke, & C. K. Chung, "High‐Performance Al/PDMS TENG with Novel Complex Morphology of Two‐Height Microneedles Array for High‐Sensitivity Force‐Sensor and Self‐Powered Application, " Small, vol. 16(35), pp. 2001209, 2020.
[6] Y. Wu, Y. Luo, J. Qu, W. A. Daoud, & T. Qi, "Nanogap and Environmentally Stable Triboelectric Nanogenerators Based on Surface Self-Modified Sustainable Films, " ACS Applied Materials & Interfaces, vol. 12(49), pp. 55444-55452, 2020.
[7] D. Heo, J. Chung, B. Kim, H. Yong, G. Shin, J. W. Cho, D. Kim, & S. Lee, "Triboelectric speed bump as a self-powered automobile warning and velocity sensor, " Nano Energy, vol. 72, pp. 104719, 2020.
[8] T. He, Z. Sun, Q. Shi, M. Zhu, D. V. Anaya, M. Xu, T. Chen, M. R. Yuce, & C. Lee, "Self-powered glove-based intuitive interface for diversified control applications in real/cyber space, " Nano Energy, vol. 58, pp. 641-651, 2019.
[9] A. Chandrasekhar, V. Vivekananthan, G. Khandelwal, & S. J. Kim, "Sustainable human-machine interactive triboelectric nanogenerator toward a smart computer mouse, " ACS Sustainable Chemistry & Engineering, vol. 7(7), pp. 7177-7182, 2019.
[10] C. Wu, A. C. Wang, W. Ding, H. Guo, & Z. L. Wang, "Triboelectric nanogenerator: a foundation of the energy for the new era, " Advanced Energy Materials, vol. 9(1), pp. 1802906, 2019.
[11] F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, & Z. L. Wang, "Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films, " Nano letters, vol. 12(6), pp. 3109-3114, 2012.
[12] G. G. Cheng, S. Y. Jiang, K. Li, Z. Q. Zhang, Y. Wang, N. Y. Yuan, J.N. Ding and W. Zhang, "Effect of argon plasma treatment on the output performance of triboelectric nanogenerator," Applied Surface Science, vol. 412, pp. 350-356, 2017.
[13] Lv, S., Zhang, X., Huang, T., Yu, H., & Zhu, M. (2021). Interconnected array design for enhancing the performance of an enclosed flexible triboelectric nanogenerator. Nano Energy, 89, 106476.
[14] Liu, Y., Zhao, C., Xiong, Y., Yang, J., Jiao, H., Zhang, Q., ... & Sun, Q. (2023). Versatile Ion‐Gel Fibrous Membrane for Energy‐Harvesting Iontronic Skin. Advanced Functional Materials, 2303723.
[15] Z. L. Wang, & J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312(5771), pp. 242-246, 2006.
[16] Z. L. Wang, "Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives, " Faraday discussions, vol. 176, pp. 447-458, 2015.
[17] F. R. Fan, Z. Q. Tian, and Z. L. Wang, "Flexible triboelectric generator," Nano Energy, vol. 1, pp. 328-334, 2012.
[18] Z. L. Wang, "Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors," ACS Nano, vol. 7, pp. 9533-9557, 2013.
[19] H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, & Z. L. Wang, "Quantifying the triboelectric series," Nature communications, vol. 10(1), pp. 1-9, 2019.
[20] Y. Wang, X. Jin, W. Wang, J. Niu, Z. Zhu, & T. Lin, "Efficient Triboelectric Nanogenerator (TENG) Output Management for Improving Charge Density and Reducing Charge Loss, " ACS Applied Electronic Materials, vol. 3(2), pp. 532-549, 2021.
[21] G. Zhu, P. Bai, J. Chen & Z. L. Wang, "Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics, " Nano Energy, vol. 2(5), pp. 688-692, 2013.
[22] X. S. Zhang, M. D. Han, R. X. Wang, F. Y. Zhu, Z. H. Li, W. Wang & H. X. Zhang, "Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems, " Nano letters, vol. 13(3), pp. 1168-1172, 2013.
[23] J. Yu, X. Hou, M. Cui, S. Shi, J. He, Y. Sun, C. Wang, & X. Chou, "Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring, " Science China Materials, vol. 62(10), pp. 1423-1432, 2019.
[24] M. Oguntoye, M. Johnson, L. Pratt, & N. S. Pesika, "Triboelectricity generation from vertically aligned carbon nanotube arrays, " ACS applied materials & interfaces, vol. 8(41), pp. 27454-27457, 2016.
[25] G. Zhu, J. Chen, Y. Liu, P. Bai, Y. S. Zhou, Q. Jing, C. Pan, & Z. L. Wang, "Linear-grating triboelectric generator based on sliding electrification, " Nano letters, vol. 13(5), 2282-2289, 2013.
[26] P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, & Z. L. Wang, "Cylindrical rotating triboelectric nanogenerator, " ACS nano, vol. 7(7), pp. 6361-6366, 2013.
[27] Y. Xie, S. Wang, L. Lin, Q. Jing, Z. H. Lin, S. Niu, & Z. L. Wang, "Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy, " ACS nano, vol. 7(8), pp. 7119-7125, 2013.
[28] Y. Yang, H. Zhang, Z. H. Lin, Y. S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, & Z. L. Wang, "Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system, " ACS nano, vol. 7(10), pp. 9213-9222, 2013.
[29] F. Yuan, S. Liu, J. Zhou, X. Fan, S. Wang & X. Gong, "A smart Kevlar-based triboelectric nanogenerator with enhanced anti-impact and self-powered sensing properties, "Smart Materials and Structures, vol. 29(12), pp. 125007, 2020.
[30] Q. Tang, X. Pu, Q. Zeng, H. Yang, J. Li, Y. Wu, H. Guo, Z. Huang, & C. Hu, "A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator, " Nano Energy, vol. 66, pp. 104087, 2019.
[31] S. Wang, S. Niu, J. Yang, L. Lin & Z. L. Wang, "Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator, " ACS nano, vol. 8(12), pp. 12004-12013, 2014.
[32] H. Yang, M. Wang, M. Deng, H. Guo, W. Zhang, H. Yang, Y. Xi, X. Li, C. Hu, & Z. Wang, "A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems, " Nano energy 56, 300-306, 2019
[33] S. Wang, Y. Xie, S. Niu, L. Lin and Z. L. Wang, "Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes," Advanced materials, vol. 26, pp. 2818-2824, 2014.
[34] V. L. Trinh, & C. K. Chung, "A Facile Method and Novel Mechanism Using Microneedle‐Structured PDMS for Triboelectric Generator Applications, " small, vol. 13(29), pp. 1700373, 2017.
[35] J. Song, L. Gao, X. Tao, & L. Li, "Ultra-Flexible and large-area textile-based triboelectric nanogenerators with a sandpaper-induced surface microstructure, " Materials, vol. 11(11), pp. 2120, 2018.
[36] Deng, Z., Xu, L., Qin, H., Li, X., Duan, J., Hou, B., & Wang, Z. L. (2022). Rationally Structured Triboelectric Nanogenerator Arrays for Harvesting Water‐Current Energy and Self‐Powered Sensing. Advanced Materials, 34(39), 2205064.
[37] Kim, D., Pramanick, B., Salazar, A., Tcho, I. W., Madou, M. J., Jung, E. S., ... & Hwang, H. (2016). 3D carbon electrode based triboelectric nanogenerator. Advanced Materials Technologies, 1(8), 1600160.
[38] Dhakar, L., Gudla, S., Shan, X., Wang, Z., Tay, F. E. H., Heng, C. H., & Lee, C. (2016). Large scale triboelectric nanogenerator and self-powered pressure sensor array using low cost roll-to-roll UV embossing. Scientific reports, 6(1), 22253
[39] Ko, Y. H., Nagaraju, G., Lee, S. H., & Yu, J. S. (2014). PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS applied materials & interfaces, 6(9), 6631-6637.
[40] Song, W., Gan, B., Jiang, T., Zhang, Y., Yu, A., Yuan, H., ... & Wang, Z. L. (2016). Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system. Acs Nano, 10(8), 8097-8103.
[41] Wang, J., Qian, S., Yu, J., Zhang, Q., Yuan, Z., Sang, S., ... & Sun, L. (2019). Flexible and wearable PDMS-based triboelectric nanogenerator for self-powered tactile sensing. Nanomaterials, 9(9), 1304.
[42] Zhang, D., Shi, J., Si, Y., & Li, T. (2019). Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy, 61, 132-140.
[43] Lin, H., He, M., Jing, Q., Yang, W., Wang, S., Liu, Y., ... & Xie, Y. (2019). Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy, 56, 269-276.
[44] Gao, F., Yao, J., Li, C., & Zhao, L. (2022). A Triboelectric Nanogenerator Array for a Self-Powered Boxing Sensor System. Journal of Electronic Materials, 51(6), 3308-3316.
[45] C. X. Lu, C. B. Han, G. Q. Gu, J. Chen, Z. W. Yang, T. Jiang, C. He, & Z. L. Wang, "Temperature effect on performance of triboelectric nanogenerator, " Advanced Engineering Materials, vol. 19(12), pp. 1700275, 2017.
[46] V. Nguyen, & R. Yang, "Effect of humidity and pressure on the triboelectric nanogenerator, " Nano Energy, vol. 2(5), pp. 604-608, 2013.
[47] S. Karmakar, P. Kumbhakar, K. Maity, D. Mandal, & P. Kumbhakar, "Development of flexible self-charging triboelectric power cell on paper for temperature and weight sensing, " Nano Energy, vol. 63, pp. 103831, 2019.
[48] G. S. Rose, & S. G. Ward, "Contact electrification across metal-dielectric and dielectric-dielectric interfaces, " British Journal of Applied Physics, vol. 8(3), pp. 121, 1957.
[49] Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong, Z. H. Lin, Y. Su, P. Bai, X. Wen, & Z. L. Wang, "Triboelectric nanogenerator for harvesting wind energy and as self-powered
[50] Liu, L., Yang, X., Zhao, L., Hong, H., Cui, H., Duan, J., ... & Tang, Q. (2021). Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS nano, 15(6), 9412-9421.
[51] Gu, H., Zhang, N., Zhou, Z., Ye, S., Wang, W., Xu, W., ... & Zhou, X. (2021). A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting. Nano Energy, 87, 106218.
[52] He, J., Guo, X., Yu, J., Qian, S., Hou, X., Cui, M., ... & Chou, X. (2020). A high-resolution flexible sensor array based on PZT nanofibers. Nanotechnology, 31(15), 155503.
[53] Keum, K., Heo, J. S., Eom, J., Lee, K. W., Park, S. K., & Kim, Y. H. (2021). Highly sensitive textile-based capacitive pressure sensors using PVDF-HFP/ionic liquid composite films. Sensors, 21(2), 442.
[54] Liu, Y., Zhao, C., Xiong, Y., Yang, J., Jiao, H., Zhang, Q., ... & Sun, Q. (2023). Versatile Ion‐Gel Fibrous Membrane for Energy‐Harvesting Iontronic Skin. Advanced Functional Materials, 2303723.
[55] Ba, Y. Y., Bao, J. F., Wang, Z. Y., Deng, H. T., Wen, D. L., Zhang, X. R., ... & Zhang, X. S. (2021). Self-powered trajectory-tracking microsystem based on electrode-miniaturized triboelectric nanogenerator. Nano Energy, 82, 105730.
[56] Yuan, Z., Zhou, T., Yin, Y., Cao, R., Li, C., & Wang, Z. L. (2017). Transparent and flexible triboelectric sensing array for touch security applications. Acs Nano, 11(8), 8364-8369.
[57] Lv, S., Zhang, X., Huang, T., Yu, H., & Zhu, M. (2021). Interconnected array design for enhancing the performance of an enclosed flexible triboelectric nanogenerator. Nano Energy, 89, 106476.
[58] Kou, H., Wang, H., Cheng, R., Liao, Y., Shi, X., Luo, J., ... & Wang, Z. L. (2022). Smart pillow based on flexible and breathable triboelectric nanogenerator arrays for head movement monitoring during sleep. ACS Applied Materials & Interfaces, 14(20), 23998-24007.
[59] M. Xu, P. Wang, Y. C. Wang, S. L. Zhang, A. C. Wang, C. Zhang, X. Pan, & Z. L. Wang, "A soft and robust spring based triboelectric nanogenerator for harvesting arbitrary directional vibration energy and self‐powered vibration sensing, " Advanced Energy Materials, vol. 8(9), pp. 1702432, 2018.
[60] Y. Yang, Z. H. Lin, T. Hou, F. Zhang, & Z. L. Wang, "Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors, " Nano Research, vol. 5(12), pp. 888-895, 2012.
[61] X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang, & Z. L. Wang, "Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy, " Energy & Environmental Science, vol. 13(1), pp. 277-285, 2020.
[62] W. Choi, I. Yun, J. Jeung, Y. S. Park, S. Cho, D. W. Kim, I. S. Kang, Y. Chung, & U. Jeong, "Stretchable triboelectric multimodal tactile interface simultaneously recognizing various dynamic body motions, " Nano Energy, vol. 56, pp. 347-356, 2019.
[63] R. D. I. G. Dharmasena, K. D. G. I. Jayawardena, C. A. Mills, J. H. B. Deane, J. V. Anguita, R. A. Dorey, & S. R. P. Silva, "Triboelectric nanogenerators: providing a fundamental framework, " Energy & Environmental Science, vol. 10(8), pp. 1801-1811, 2017.
[64] Z. L. Wang, T. Jiang, & L, Xu, "Toward the blue energy dream by triboelectric nanogenerator networks, " Nano Energy, vol. 39, pp. 9-23, 2017.
[65] D. Ali, B. Yu, X. Duan, H. Yu, & M. Zhu, "Enhancement of output performance through post-poling technique on BaTiO3/PDMS-based triboelectric nanogenerator, " Nanotechnology, vol. 28(7), pp. 075203, 2017.
[66] Z. Fang, K. H. Chan, X. Lu, C. F. Tan, & G. W. Ho, "Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance, " Journal of Materials Chemistry A, vol. 6(1), pp. 52-57, 2018.
[67] D. Yang, H. Guo, X. Chen, L. Wang, P. Jiang, W. Zhang, L. Zhang, & Z. L. Wang, "A flexible and wide pressure range triboelectric sensor array for real-time pressure detection and distribution mapping, " Journal of Materials Chemistry A, vol. 8(45), pp. 23827-23833, 2020.
[68] Y. Zhang, Y. Hu, P. Zhu, F. Han, Y. Zhu, R. Sun, & C. P. Wong, "Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics, " ACS applied materials & interfaces, vol. 9(41), pp. 35968-35976, 2017.
[69] P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, & Z. L. Wang, "Membrane‐based self‐powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring, " Advanced Functional Materials, vol. 24(37), pp. 5807-5813, 2014.
[70] X. Wang, H. Zhang, L. Dong, X. Han, W. Du, J. Zhai, C. Peng, & Z. L. Wang, "Self‐powered high‐resolution and pressure‐sensitive triboelectric sensor matrix for real‐time tactile mapping, " Advanced materials, vol. 28(15), pp. 2896-2903, 2016.
校內:不公開