| 研究生: |
戴巧雯 Tai, Chiao-Wen |
|---|---|
| 論文名稱: |
多目標遺傳演算法應用於滯洪池最佳化優選 Application of Multi-Objective Genetic Algorithm for Optimization of Detention Pond Selection |
| 指導教授: |
游保杉
Yu, Pao-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 多目標遺傳演算法 、淹水模式 、滯洪池 、最佳化 |
| 外文關鍵詞: | multi-objective genetic algorithm, inundation model, detention pond, optimization |
| 相關次數: | 點閱:136 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在建立滯洪池優選模式,嘗試以地文性淹排水模式(physiographic drainage-inundation model, PHD model)與非支配排序遺傳演算法(A fast elitist non-dominated sorting genetic algorithm-II, NSGA-II)根據水利規劃試驗所在典寶溪流域所規劃設置滯洪池之地點做優選,考慮不同重現期距降雨情境下,分析滯洪池最佳設置容量與地點,以供決策者參考。
近年來由於都市化與氣候變遷影響下,產生極端降雨與不透水面積的增加,進而導致洪峰流量、逕流體積的增加及集流時間的減少,對於易淹水的地區更增加了壓力,並加劇生命、土地、物業與基礎設施的損害。為了減少潛在的危害,在水資源規劃中,洪水管理是重要的議題之一。近年來,洪水管理採用綜合治水之方式,其中多建議以設置滯洪池為重,然而治水成本有限,因此選擇設置滯洪池之地點與容量所帶來效益是最好的,可能是決策者所需要的資訊。
本研究進行滯洪池最佳化優選是使用擬似二維淹水模式-地文性淹排水模式(PHD model)來計算不同滯洪池設置組合之淹水損失,並結合多目標最佳化模式-非支配遺傳演算法(NSGA-II)得到最少的滯洪池設置費用與淹水損失額,兩衝突目標函數之柏拉圖最佳解(Pareto-optimal solutions)。透過滯洪池優選模式顯示出在2年、5年重現期距降雨下,滯洪池C對淹水損失有良好之效果,而滯洪池B相對之下則比較沒效果;在10年與25年重現期距降雨下,則可發現較著重在上游設置滯洪池(滯洪池A、B、C),並與水規所以10年重現期距之規劃,先設置A、B結果是相符合的。決策者可針對不同層級資金下,最佳減洪效果之滯洪池設置組合作為考慮決策準則,或者在預算有限之情況下,根據後優選方式,以妥協規劃法(compromise programming approach)得到之妥協解作為參考,並透過直接益本比之計算,以10年重現期距之妥協解最為經濟。
The study aims at proposing a simulation-optimization model for deciding the optimal combination of detention ponds, which comprises a physiographic drainage-inundation model and a non-dominated sorting genetic algorithm II (NSGA-II). The Dian-Bao Creek Basin in southern Taiwan is chosen as the study area. Five detention pond candidates with different sizes and lacations are adopted for optimizing their combination by minimizing the investment cost and the cost of inundation damage. One-day design rainfalls for different return periods (i.e., 2, 5, 10, 25-years) are used as the model input. During the optimization process, the two conflicting objectives, the investment cost and the cost of inundation damage, are minimized to obtain the Pareto-optimal solutions by using NSGA-II. Based on the post optimization approach, the compromise solutions for different return periods are obtained. An easy cost-benefit analysis is used to evaluate the compromise solutions for different return periods. The optimal combination of detention ponds for the return period (e.g., 10 years in thestudy case) with the hightest direct benefic-coat ratio can be suggested for decision making.
1. 吳馥光,2003,「沿海低地之豪雨暴潮淹水現象之研究」,國立成功大學水利及海洋工程學系碩士論文。
2. 許銘熙、鄧慰先、李明旭、柳文成,1994,「八掌溪流域地表淹水預報模式之研究(一)」,行政院國家科學委員會。
3. 郭鑑儀,2009,「非優勢排序遺傳演算法於多水庫系統颱洪操作之規劃」,淡江大學水資源及環境工程學系碩士論文。
4. 曾志銓,2001,「滯洪池系統最佳化之研究」,國立中央大學土木工程學系碩士論文。
5. 湯嘉芸、謝平城、林俐玲,2007,「FLO-2D與HEC-GeoRAS應用於敏督利颱風造成南湖溪淹水之模擬」,水土保持學報39(1),第87-96頁。
6. 黃中信,2007,「三爺溪流域綜合治水建置合適滯洪池設施之效益評析」,國立成功大學水利及海洋工程學系碩士論文。
7. 黃景裕,2008,「多標的遺傳演算法探討南化水庫最佳限水策略」,淡江大學水資源及環境工程學系碩士論文。
8. 經濟部水利署,2003,「台灣地區雨量測站降雨強度-延時Horner公式分析」。
9. 經濟部水利署水利規劃試驗所,2008,「高雄地區典寶溪排水系統整治及環境營造規劃報告」,經濟部水利署。
10. 經濟部水利署水利規劃試驗所,2009,「流域數值地形系統淹水模組開發及建置之研究-以大里溪流域為例(1/2)」,國立台灣海洋大學。
11. 經濟部水利署水利規劃試驗所,2010,「流域數值地形系統淹水模組開發及建置之研究-以大里溪流域為例(2/2)」,國立台灣海洋大學。
12. 經濟部水利署水利規劃試驗所,2011,「典寶溪排水都會區空間規劃之研究」,巨廷工程顧問股份有限公司。
13. 經濟部水利署水利規劃試驗所,2012,「沿海低地排水系統淹水預警模式之研究-二仁溪以南至林邊溪(1/2)」,財團法人成大研究發展基金會。
14. 蔡長泰、顏沛華、呂育勳、陳聰智、莊仕城,1988,「濁水溪潰堤演算模式之初步研究」,行政院國家科學委員會防災科技研究報告75-37號。
15. 蔡燿龍,2005,「雨水滯蓄系統在區域供水與暴雨逕流管理之應用」,國立台灣海洋大學河海工程學系博士論文。
16. 顏清連、許銘熙、陳昶憲、賴進松,1986,「淡水河系洪水演算模式(四)堤防潰決洪流模式之建立」,行政院國家科學委員會防災科技研究報告75-19號。
17. 蘇明道、李光敦、呂建華,2000,「淹水模式基本數值地理資訊系統之建立(一)」,防災專案計畫成果研討會論文集第一冊,第11-1-16頁。
18. Bennett, Michael S. and Larry W. Mays, “Optimal design of detention and drainage channel systems”, Journal of Water Resources Planning and Management, ASCE, 111(1):99-113, (1985).
19. Cunge, J.A., “Unsteady Flow in open channel”, Water Resource, 705-762, (1980).
20. Chen, L., McPhee, J. and Yeh, W. W.-G., “A diversified multiobjective GA for optimizing reservoir rule curves”, Advances in Water Resources, 30:1082-1093, (2007).
21. Damodaram, Chandana and Emily M. Zechman, M.ASCE, “Simulation-Optimization Approach to Design Low Impact Development for Managing Peak Flow Alterations in Urbanizing Watersheds”, Journal of Water Resources Planning and Management, ASCE, 139:290-298, (2013).
22. Deb, K., “Multi-objective Optimization Using Evolutionary Algorithms”, John Wiley & Sons, Chichester, (2001).
23. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, 6(2), 182-197, (2002).
24. Fonseca, C.M. and Fleming, P.J., “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization”, Dept. Automatic Control and Systems Eng. University of Sheffield Sheffield S1 4DU, U.K., (1993).
25. Grefenstette, J.J., “Optimization of control parameters for genetic algorithms”, IEEE Trans. Syst., Man, Cybern., 6(1):122-128, (1986).
26. Holland, J.H., “Adaptayion in Natural and Artificial Systems, Ann Arbor, MI: The University of Michigan Press, (1975).
27. Inove, K., Iwasa, Y., and Matsuo, N., “Numercial analysis of two-dimensional free surface flow by means of finite difference Method and its application to practical problems”,ROC-Japan Joint Seminar on Water Resource Engineering,(1987).
28. Mays, Larry W. and Phillip B. Bendient, “Model for optimal size and location of detention”, Journal of Water Resources Planning and Management, ASCE, 118(11), (1982).
29. Ngo, L.L., Madsen, H. and Rosbjerg, D., “Simulation and optimization modeling approach for operation of the Hoa Binh reservoir”, Vietnam. Journal of Hydrology 336:269-281, (2007).
30. O’Brien, J. S., Julien, P. J. and Fullerton, W.T., “Two-dimensional water flood and mudflow simulation”, Journal of Hydraulic Engineering, 119(2), 244-261, (1993).
31. Park, C.H. Jin Gul Joo and Joong Hoon Kim, “Integrated washland optimization model for flood mitigation using multi-objective genetic algorithm”, Journal of Hydro-environment Research, 6:119-126, (2012).
32. Knowles, J. and Corne, D., “The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization”, Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, USA, 98-105, (1999).
33. Reedy, M.J. and Kumar, D.N., “Optimal Reservoir Operation Using Multi-Objective Evolutionary Algorithm”, Water Resources Management, 20:861-878, (2006).
34. Smith, D.P., Jr. and P.B. Bedient, “Detention Storage for Urban Flood Control”, Journal of Water Resources Planning and Management, 106(WR2):413-425, (1980).
35. Yazdi J. and S.A.A. Salehi Neyshabouri, “A Simulation-Based Optimization Model for Flood Management”, Water Resour Manage, 26:4569-4586, (2012).
36. Yeh, C.H. and J.W. Labadie, “Multiobjective Watershed-level Planning of Storm Water Detention Systems” Journal of Water Resources Planning and Management, 123(6): 336-343, (1997).
37. Zitzler, T. and Thiele, L., “Multiobjective evolutionary algorithm: A comparative case study and the strength Pareto approach”, IEEE Transactions on Evolutionary Computation, 3(4), 257-271, (1999).