| 研究生: |
陳昱瑞 Chen, Yu-Ruei |
|---|---|
| 論文名稱: |
Mg4Nb2O9 介電陶瓷之微波特性改善及其應用 Microwave Dielectric Properties and Applications of Modified Mg4Nb2O9 Ceramics |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 陶瓷 、微波 |
| 外文關鍵詞: | ceramic, microwave |
| 相關次數: | 點閱:58 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將探討添加燒結促進劑對於陶瓷微波介電材料Mg4Nb2O9之介電特性與材料之微結構的影響。Mg4Nb2O9 其介電常數為12.9,Q×f 為210000GHz,且共振頻率之溫度飄移係數為-70.4 ppm/℃,但其燒結溫度必須達到近1400℃,且燒結時間必須長達10 小時,故分別添加不同燒結促進劑Fe2O3、ZnO 和WO3 以降低其燒結溫度,並探討添加後對其介電特性與材料之微結構是否產生影響。根據實驗結果顯示,添加不同燒結促進劑均可使燒結溫度降低至1270℃~1330℃,且燒結時間均減少至4 小時。而添加後擁有最佳介電特性之燒結促進劑為Fe2O3,當添加量為0.75wt%時,介電常數為13.46,且Q×f可達到280000GHz(11GHz),溫度飄移係數為-62 ppm/℃。
此外,本論文還分別以FR4、Al2O3 及添加0.75wt%Fe2O3 的Mg4Nb2O9 作為基板來設計一方型片狀共振器之帶通濾波器,濾波器的規格為:中心頻率2.45GHz、頻寬約25%,並使用電磁模擬軟體HFSS 來進行電腦模擬,最後探討模擬與實際量測之差異。
The influence of adding sintering aids on dielectric properties and microstructure of the ceramic microwave dielectric materials Mg4Nb2O9 was investigated. The dielectric constant of Mg4Nb2O9 is 12.9, Q×f is 210000GHz, and τ is -70.4 ppm/°C. Nevertheless,the sintering temperature is around 1400℃, and sintering time must approach to 10 hours.Trying to add different sintering aids Fe2O3、ZnO and WO3 respectively in order to decrease the sintering temperature and time. And concern about whether the dielectric properties and microstructure would be affected by adding the sintering aids.According to the experiment results, the sintering temperature would be decreased to about 1270°C ~1330°C by adding different sintering aids, and the sintering time also be reduced to 4 hours. The sintering aids which has the best dielectric properties is Fe2O3.With 0.75wt% Fe2O3 addition, the dielectric constant is 13.46, Q×f is 280000GHz (at
11GHz) and τ is -62 ppm /°C.Furthermore, a square patch resonator of bandpass filter was designed and fabricated.
The filter which center frequency is 2.45GHz and bandwidth is about 25% was realized on FR4, Al2O3 and Mg4Nb2O9 with 0.75wt% Fe2O3 doped substrates. And discuss the
difference between the results of simulation by the software HFSS and measurement.
(1) Akinori Kan, Hirotaka Ogawa, Atsushi Yokoi, Hitoshi Ohsato, “Low-temperature
Sintering and Microstructure of Mg4(Nb2-xVx)O9 Microwave Dielectric Ceramic
by V substitution Nb.” Jpn.J.Appl.Phys , Vol.42, pp.6154-6157, (2003)
(2) A.F.Sheta , N.Dib and A.Mohra , “Investagation of new nondegenerate dual-mode
microstrip patch filter” , IEE Proc.-Microw.Antennas Propag , Vol.153 , No.1 ,
February (2006)
(3) R. D. Richtmyer, “Dielectric Resonator” J. Appl. phys., vol.10, pp.391-398, 1939.
(4) H. K. Bowen and D. R. Uhlmann , “Introduction to Ceramics” , 2nd ed.Chap
18 ,John Wiley & Sons , Inc.(1975)
(5) A.J.Moulson , J.M. Herbert,“Electroceramics:materialsproperties applocations ”,
Chapman & Hall,pp.16-82 (1990)
(6) David M. Pozar “Microwave Engineering”, Addison-Wesley, (1998).
(7) D. Kajfez, “Computed model field distribution for isolated dielectric
resonators,”IEEE.Trans. Microwave Theory Tech. , vol. MTT-32, pp. 1609-1616,
Dec.(1984).
(8) D. Kajfez, “Basic principle give understanding of dielectric waveguides and
resonators,” Microwave System News, vol. 13, pp. 152-161, (1983).
(9) D. Kajfez, and P. Guillon, Dielectric resonators. , New York: Artech House, (1989).
(10) N. Kumada, K. Taki, N.Kinomura, “Single crystal structure refinement of a
magnesium niobium oxide: Mg4Nb2O9” , Materials Research Bulletin 35(2000)
(11) T. Negas and G. Yeager, “Ba4Ti9O/Ba2Ti9O20- based ceramics resurrected for
modern microwave application”, J. Am. Ceram. Soc., 72 [1] 80-89(1993)
(12) W. Y. Lin and R. F. Speyer, “Microwave properties of Ba2Ti9O20doped with
zirconium and tin oxides”, J. Am. Ceram. Soc., 82 [5] 1207-1211(1999)
(13) W. S. Kim and T. H. Kim , “Microwave dielectric properties and far infrared
reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives” , Jpn. J. Appl.Phys., 37, 5367-5371(1998)
- 102 -
(14) K. Wakion and K. Minai, “Microwave Characteristics of(Zr,Sn)TiO4 and
BaO-PbO-Nd2O3-Ti2O dielectric Resonators”, J. Am.Ceram. Soc., 67 [4]278-281(1984)
(15) R. Ubic and W.E. Lee, “Perovskite 3 NdTiO in Sr- and Ca- doping BaO-Nd2O3-Ti2O microwave dielectric ceramics”, J. Mater. Res.14[4],
1576-1580(1999)
(16) M. T. Sebastian, “New low loss microwave dielectric ceramics in the BaO-Nd2O3-Ti2O/Ta2O5 system”, J. Mater. Sci. Mater. El. ,10 , 475-478(1999)
(17) A. Webhofer and A. Feltz, “Microwave dielectric properties of ceramics of the
system Ba6-x(SmyNd1-y)8+2x/3Ti18O54, J. Mater. Sci.Lett. , 18, 719-721(1999)
(18) F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst.Mining.
Met. Engrs, pp.878-905, (1948).
(19) J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon and H.-J
Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High
Q Values”, J. Appl. phys., vol.33, pp.5466-5470.
(20) Schaffer Saxena Antolovich Sanders Warner, “The Science and Design of
Engineering Materials”, Chap3.
(21) 肖定全, 陶瓷材料,新文京開發出版, p49-55,(2003)
(22) V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York:
Consultants Bureau, ch. 4, (1970).
(23) K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy (1984).
(24) J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase
s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul.
(1970).
(25) W. J. Huppmann, and G. Petzow, Sintering processes. , New York: Plenum Pr-ess,
pp. 189-202, (1979).
(26) W. J. Huppmann, and G. Petzow, Ber. Bunnsenges phys. chem., 82, pp. 308, 1978.
(27) R. M. German, Liquid phase sintering. , New York: Plenum Press, ch. 4, (1985).
(28) J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J.
Mater. Sci., vol. 24, pp. 500-504, Feb. (1989).
(29) 翁敏航, 射頻被動元件設計, 東華書局,(2006)
- 103 -
(30) R.L. Geiger, P.E. Allen, N.R. Strader, “VLSI Design Techniques for Analog and
Digital Circuits”, McGraw-Hill, pp. 674-685, (1990).
(31) Brian C. Wadell, Transmission line design handbook, chap5.
(32) L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit
design. , UK: Ellis Horwood, (1991).
(33) R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans.
Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. (1968).
(34) G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedancemattching,
networks, and coupling structures. , New York: McGraw-Hill, (1980).
(35) V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to
impedance step and their compensations,” IEEE Trans. Microwave Theory Te-ch.,
vol. MTT-20, pp. 573-578, Sep. (1980).
(36) 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,(1998)
(37) I.Wolff , “Microstrip Bandpass Filter Using Degenerate Modes of a Microstrip
Ring Resonator”, Electronics Letters, 15th , June,Vol.8,No.12, (1972)
(38) J.S.Hong and M.J.Lancater, “Microstrip bandpass filter using degenerate modes of
a novel meander loop resonator.” IEEE, Microwave and Guided Wave Letters. ,
Vol.5 , pp.371-372 , (1995)
(39) J.S.Hong and M.J.Lancater,“Microstrip Filters for RF/Microwave Applications.”
John Wiley & Sons , Inc. (2001)
(40) J.S.Hong and M.J.Lancater, “Bandpass Characteristics of New-Dual mode
Microstrip Square Loop Resonators.” Electronics Letters,Vol.31,pp.891-892,(1995)
(41) J.S.Hong and Shuzhou Li, “Theory and Experiment of Dual-Mode Microstrip
Triangular Patch Resonators and Filters.” IEEE Trans., Microwave Theory Tech. ,
Vol.52 , pp.1237-1243 , (2004)
(42) K.K.M. Chang , “Design of Dual-mode Ring Resonators with Transmission Zeros”,
Electronics Letters, Vol.33, pp.1392-1393 , (1997)
(43) L.H. Hsieh and K. Chang, “Dual-Mode Quasi-elliptic-function Bandpass Filters
Using Ring Resonators with Enhanced-coupling Tuning Stubs.” IEEE Trans.,
Microwave Theory Tech., Vol.47 , pp.650-654 , (1999)
(44) J.-K. Xiao, S.-P. Li, and Y. Li, “Novel Planar Bandpass Filters Using Single Patch
Resonators with Corner Cuts.” J. of Electromagn. Waves and Appl. Vol.20 , No.11 ,
- 104 -
1481-1493 , (2006)
(45) Bahl.I and P.Bhartia, “Microwave Solid State Circuit Design.” , 16-18, John Wiley
& Sons , (1988)
(46) Du, Z., Gong, K., Fu, J., and Gao, B., “Analysis of microstrip fractal patch antenna
for multi-band communication.” Electron.Lett. , 37,pp.805-806, (2001)
(47) P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the
Dielectric Constant of Dielectric Resonators”, IEEE MTT-S, Symposium Dig., pp.
473-476, (1985).
(48) Y. Kobayashi, and N. Katoh, “Microwave Measurement of Dielectric Properties of
Low-loss Materials by Dielectric Rod Resonator Method”, IEEE. Trans. MTT, vol.
MTT-33, pp.586-592, (1985).
(49) W. E. Courtney “Analysis and evaluation of a method of measuring the complex
permittivity and permeability of microwave insulators”, IEEE. Trans. Microwave
Theory Tech., vol. MTT-18, pp. 476-485, (1970).
(50) B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring
Inductive Capacities in the Millimeter range”, IEEE Trans. MTT, vol. MTTS, pp.
402-410, (1960).
校內:2058-07-15公開