簡易檢索 / 詳目顯示

研究生: 陳昱瑞
Chen, Yu-Ruei
論文名稱: Mg4Nb2O9 介電陶瓷之微波特性改善及其應用
Microwave Dielectric Properties and Applications of Modified Mg4Nb2O9 Ceramics
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 104
中文關鍵詞: 陶瓷微波
外文關鍵詞: ceramic, microwave
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將探討添加燒結促進劑對於陶瓷微波介電材料Mg4Nb2O9之介電特性與材料之微結構的影響。Mg4Nb2O9 其介電常數為12.9,Q×f 為210000GHz,且共振頻率之溫度飄移係數為-70.4 ppm/℃,但其燒結溫度必須達到近1400℃,且燒結時間必須長達10 小時,故分別添加不同燒結促進劑Fe2O3、ZnO 和WO3 以降低其燒結溫度,並探討添加後對其介電特性與材料之微結構是否產生影響。根據實驗結果顯示,添加不同燒結促進劑均可使燒結溫度降低至1270℃~1330℃,且燒結時間均減少至4 小時。而添加後擁有最佳介電特性之燒結促進劑為Fe2O3,當添加量為0.75wt%時,介電常數為13.46,且Q×f可達到280000GHz(11GHz),溫度飄移係數為-62 ppm/℃。
    此外,本論文還分別以FR4、Al2O3 及添加0.75wt%Fe2O3 的Mg4Nb2O9 作為基板來設計一方型片狀共振器之帶通濾波器,濾波器的規格為:中心頻率2.45GHz、頻寬約25%,並使用電磁模擬軟體HFSS 來進行電腦模擬,最後探討模擬與實際量測之差異。

    The influence of adding sintering aids on dielectric properties and microstructure of the ceramic microwave dielectric materials Mg4Nb2O9 was investigated. The dielectric constant of Mg4Nb2O9 is 12.9, Q×f is 210000GHz, and τ is -70.4 ppm/°C. Nevertheless,the sintering temperature is around 1400℃, and sintering time must approach to 10 hours.Trying to add different sintering aids Fe2O3、ZnO and WO3 respectively in order to decrease the sintering temperature and time. And concern about whether the dielectric properties and microstructure would be affected by adding the sintering aids.According to the experiment results, the sintering temperature would be decreased to about 1270°C ~1330°C by adding different sintering aids, and the sintering time also be reduced to 4 hours. The sintering aids which has the best dielectric properties is Fe2O3.With 0.75wt% Fe2O3 addition, the dielectric constant is 13.46, Q×f is 280000GHz (at
    11GHz) and τ is -62 ppm /°C.Furthermore, a square patch resonator of bandpass filter was designed and fabricated.
    The filter which center frequency is 2.45GHz and bandwidth is about 25% was realized on FR4, Al2O3 and Mg4Nb2O9 with 0.75wt% Fe2O3 doped substrates. And discuss the
    difference between the results of simulation by the software HFSS and measurement.

    第一章 緒論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 1-1 前言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 1-2 研究目的⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 第二章 介電材料原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 2-1 介電材料的微波特性與理論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 2-2 介電共振器原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 2-3 陶瓷介電微波材料之發展現況⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 15 2-3-1 Mg4Nb2O9 之結構⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 16 2-4 燒結理論及工藝⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 18 2-4-1 燒結過程分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 18 2-4-2 影響燒結的幾個因素⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 20 2-4-3 液相燒結理論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 20 第三章 微帶線及濾波器之原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 22 3-1 濾波器的簡介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 22 3-2 微帶線原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 26 3-2-1 微帶傳輸線介紹⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 26 3-2-2 微帶線傳輸組態⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 26 3-2-3 微帶線各項參數公式計算及考量⋯⋯⋯⋯⋯⋯⋯⋯⋯ 27 3-3 雙模態濾波器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 35 3-3-1 雙模態濾波器之簡單介紹⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 35 3-3-2 雙模態濾波器之發展⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 36 3-3-3 雙模態濾波器之種類⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 37 3-3-4 共振器之共振頻率計算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 39 3-4 正方形片狀共振器之帶通濾波器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 43 第四章 實驗程序與量測方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 46 4-1 陶瓷微波介電材料之製備⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 46 4-2 微波介電材料的量測與特性分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 48 4-2-1 X-Ray 分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 48 4-2-2 掃瞄式電子顯微鏡(SEM)分析⋯⋯⋯⋯⋯⋯⋯⋯⋯ 48 4-2-3 密度之量測⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 48 4-2-4 微波介電特性之量測⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 49 4-3 濾波器之製作與量測⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 55 4-3-1 濾波器設計⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 55 4-3-2 濾波器實作⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 55 4-3-3 特性量測⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 56 第五章 實驗結果與討論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 57 5-1 Mg4Nb2O9 微波特性之探討⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 57 5-1-1 燒結促進劑Fe2O3 的添加對於Mg4Nb2O9 之影響⋯⋯ 57 5-1-2 燒結促進劑ZnO的添加對於Mg4Nb2O9 之影響⋯⋯⋯ 69 5-1-3 燒結促進劑WO3的添加對於Mg4Nb2O9之影響⋯⋯⋯ 78 5-2 不同燒結促進劑對於Mg4Nb2O9 之影響⋯⋯⋯⋯⋯⋯⋯⋯⋯ 87 5-3 濾波器之頻率響應⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 89 5-3-1 使用FR4基板⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 90 5-3-2 使用Al2O3 基板⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 93 5-3-3 使用自製基板⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 96 5-4 濾波器之實作結果探討⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 99 第六章 結論與未來展望⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 100 參考文獻⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 101

    (1) Akinori Kan, Hirotaka Ogawa, Atsushi Yokoi, Hitoshi Ohsato, “Low-temperature
    Sintering and Microstructure of Mg4(Nb2-xVx)O9 Microwave Dielectric Ceramic
    by V substitution Nb.” Jpn.J.Appl.Phys , Vol.42, pp.6154-6157, (2003)
    (2) A.F.Sheta , N.Dib and A.Mohra , “Investagation of new nondegenerate dual-mode
    microstrip patch filter” , IEE Proc.-Microw.Antennas Propag , Vol.153 , No.1 ,
    February (2006)
    (3) R. D. Richtmyer, “Dielectric Resonator” J. Appl. phys., vol.10, pp.391-398, 1939.
    (4) H. K. Bowen and D. R. Uhlmann , “Introduction to Ceramics” , 2nd ed.Chap
    18 ,John Wiley & Sons , Inc.(1975)
    (5) A.J.Moulson , J.M. Herbert,“Electroceramics:materialsproperties applocations ”,
    Chapman & Hall,pp.16-82 (1990)
    (6) David M. Pozar “Microwave Engineering”, Addison-Wesley, (1998).
    (7) D. Kajfez, “Computed model field distribution for isolated dielectric
    resonators,”IEEE.Trans. Microwave Theory Tech. , vol. MTT-32, pp. 1609-1616,
    Dec.(1984).
    (8) D. Kajfez, “Basic principle give understanding of dielectric waveguides and
    resonators,” Microwave System News, vol. 13, pp. 152-161, (1983).
    (9) D. Kajfez, and P. Guillon, Dielectric resonators. , New York: Artech House, (1989).
    (10) N. Kumada, K. Taki, N.Kinomura, “Single crystal structure refinement of a
    magnesium niobium oxide: Mg4Nb2O9” , Materials Research Bulletin 35(2000)
    (11) T. Negas and G. Yeager, “Ba4Ti9O/Ba2Ti9O20- based ceramics resurrected for
    modern microwave application”, J. Am. Ceram. Soc., 72 [1] 80-89(1993)
    (12) W. Y. Lin and R. F. Speyer, “Microwave properties of Ba2Ti9O20doped with
    zirconium and tin oxides”, J. Am. Ceram. Soc., 82 [5] 1207-1211(1999)
    (13) W. S. Kim and T. H. Kim , “Microwave dielectric properties and far infrared
    reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives” , Jpn. J. Appl.Phys., 37, 5367-5371(1998)
    - 102 -
    (14) K. Wakion and K. Minai, “Microwave Characteristics of(Zr,Sn)TiO4 and
    BaO-PbO-Nd2O3-Ti2O dielectric Resonators”, J. Am.Ceram. Soc., 67 [4]278-281(1984)
    (15) R. Ubic and W.E. Lee, “Perovskite 3 NdTiO in Sr- and Ca- doping BaO-Nd2O3-Ti2O microwave dielectric ceramics”, J. Mater. Res.14[4],
    1576-1580(1999)
    (16) M. T. Sebastian, “New low loss microwave dielectric ceramics in the BaO-Nd2O3-Ti2O/Ta2O5 system”, J. Mater. Sci. Mater. El. ,10 , 475-478(1999)
    (17) A. Webhofer and A. Feltz, “Microwave dielectric properties of ceramics of the
    system Ba6-x(SmyNd1-y)8+2x/3Ti18O54, J. Mater. Sci.Lett. , 18, 719-721(1999)
    (18) F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst.Mining.
    Met. Engrs, pp.878-905, (1948).
    (19) J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon and H.-J
    Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High
    Q Values”, J. Appl. phys., vol.33, pp.5466-5470.
    (20) Schaffer Saxena Antolovich Sanders Warner, “The Science and Design of
    Engineering Materials”, Chap3.
    (21) 肖定全, 陶瓷材料,新文京開發出版, p49-55,(2003)
    (22) V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York:
    Consultants Bureau, ch. 4, (1970).
    (23) K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy (1984).
    (24) J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-phase
    s-intering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, Jul.
    (1970).
    (25) W. J. Huppmann, and G. Petzow, Sintering processes. , New York: Plenum Pr-ess,
    pp. 189-202, (1979).
    (26) W. J. Huppmann, and G. Petzow, Ber. Bunnsenges phys. chem., 82, pp. 308, 1978.
    (27) R. M. German, Liquid phase sintering. , New York: Plenum Press, ch. 4, (1985).
    (28) J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe allo-ys,” J.
    Mater. Sci., vol. 24, pp. 500-504, Feb. (1989).
    (29) 翁敏航, 射頻被動元件設計, 東華書局,(2006)
    - 103 -
    (30) R.L. Geiger, P.E. Allen, N.R. Strader, “VLSI Design Techniques for Analog and
    Digital Circuits”, McGraw-Hill, pp. 674-685, (1990).
    (31) Brian C. Wadell, Transmission line design handbook, chap5.
    (32) L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit
    design. , UK: Ellis Horwood, (1991).
    (33) R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans.
    Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. (1968).
    (34) G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedancemattching,
    networks, and coupling structures. , New York: McGraw-Hill, (1980).
    (35) V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to
    impedance step and their compensations,” IEEE Trans. Microwave Theory Te-ch.,
    vol. MTT-20, pp. 573-578, Sep. (1980).
    (36) 張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,(1998)
    (37) I.Wolff , “Microstrip Bandpass Filter Using Degenerate Modes of a Microstrip
    Ring Resonator”, Electronics Letters, 15th , June,Vol.8,No.12, (1972)
    (38) J.S.Hong and M.J.Lancater, “Microstrip bandpass filter using degenerate modes of
    a novel meander loop resonator.” IEEE, Microwave and Guided Wave Letters. ,
    Vol.5 , pp.371-372 , (1995)
    (39) J.S.Hong and M.J.Lancater,“Microstrip Filters for RF/Microwave Applications.”
    John Wiley & Sons , Inc. (2001)
    (40) J.S.Hong and M.J.Lancater, “Bandpass Characteristics of New-Dual mode
    Microstrip Square Loop Resonators.” Electronics Letters,Vol.31,pp.891-892,(1995)
    (41) J.S.Hong and Shuzhou Li, “Theory and Experiment of Dual-Mode Microstrip
    Triangular Patch Resonators and Filters.” IEEE Trans., Microwave Theory Tech. ,
    Vol.52 , pp.1237-1243 , (2004)
    (42) K.K.M. Chang , “Design of Dual-mode Ring Resonators with Transmission Zeros”,
    Electronics Letters, Vol.33, pp.1392-1393 , (1997)
    (43) L.H. Hsieh and K. Chang, “Dual-Mode Quasi-elliptic-function Bandpass Filters
    Using Ring Resonators with Enhanced-coupling Tuning Stubs.” IEEE Trans.,
    Microwave Theory Tech., Vol.47 , pp.650-654 , (1999)
    (44) J.-K. Xiao, S.-P. Li, and Y. Li, “Novel Planar Bandpass Filters Using Single Patch
    Resonators with Corner Cuts.” J. of Electromagn. Waves and Appl. Vol.20 , No.11 ,
    - 104 -
    1481-1493 , (2006)
    (45) Bahl.I and P.Bhartia, “Microwave Solid State Circuit Design.” , 16-18, John Wiley
    & Sons , (1988)
    (46) Du, Z., Gong, K., Fu, J., and Gao, B., “Analysis of microstrip fractal patch antenna
    for multi-band communication.” Electron.Lett. , 37,pp.805-806, (2001)
    (47) P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the
    Dielectric Constant of Dielectric Resonators”, IEEE MTT-S, Symposium Dig., pp.
    473-476, (1985).
    (48) Y. Kobayashi, and N. Katoh, “Microwave Measurement of Dielectric Properties of
    Low-loss Materials by Dielectric Rod Resonator Method”, IEEE. Trans. MTT, vol.
    MTT-33, pp.586-592, (1985).
    (49) W. E. Courtney “Analysis and evaluation of a method of measuring the complex
    permittivity and permeability of microwave insulators”, IEEE. Trans. Microwave
    Theory Tech., vol. MTT-18, pp. 476-485, (1970).
    (50) B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring
    Inductive Capacities in the Millimeter range”, IEEE Trans. MTT, vol. MTTS, pp.
    402-410, (1960).

    無法下載圖示 校內:2058-07-15公開
    校外:2058-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE