簡易檢索 / 詳目顯示

研究生: 洪挺軒
Hung, Ting-Hsuan
論文名稱: 具最佳化回授電路之遲滯電容電流控制直流-直流降壓轉換器
A Hysteretic Capacitor Current Control DC-DC Buck Converter with Transient-Optimized Feedback Circuit
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 直流-直流降壓轉換器暫態響應動態電壓調節電容電流感測
外文關鍵詞: DC-DC buck converter, transient response, dynamic voltage scaling, capacitor current sensor
相關次數: 點閱:179下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出具最佳化回授電路之遲滯電容電流控制直流-直流降壓轉換器以同時達到最佳化輸入電壓/負載電流/動態電壓調節暫態響應。因為其固有的最佳化輸入電壓暫態性能,具積體化電容電流感測器之遲滯控制為使用的控制模式。而根據時域的分析,具有非線性回授之最佳化回授電路被提出來最佳化負載電流/動態電壓調節暫態響應。此外,誤差放大器提供了良好的調節律效能,而暫態保留技術減少誤差放大器對於電容值的需求以減小控制器面積。能量回收機制將多餘的輸出電容能量回收至輸入端,負載電流/動態電壓調節暫態響應也因此不受到小負載電流的限制。
    本晶片由0.35-μm CMOS 所完成,面積為0.88mm2。1-V 輸入電壓暫態響應量測出可忽略的輸出擾動。對於500-mA負載電流,輸出電壓在0.8 μs內穩定。對於0.6-V動態電壓調節,輸出電壓在3μs內穩定。輸入電壓調節率為2.5mV/V而負載調節率為0.5mV/A。最大負載電流可達2A而在輸出功率為500mW時量測到最大效率96%。

    A hysteretic capacitor current control DC-DC buck converter with transient-optimized feedback circuit is presented to simultaneously achieve optimal line/load/DVS transient responses. The hysteretic control with an on-chip capacitor current sensor (CCS) is adopted for its inherent well line transient performance. According to time-domain analysis, a transient-optimized feedback circuit (TOFC) with non-linear feedback is proposed to optimize load/DVS transient responses. Moreover, the error amplifier improves the regulation performance and a transient-hold (TH) technique reduces the required capacitance of the error amplifier to save the controller area. An energy-recycled control (ERC) recycles the excess energy in the output capacitor to the input supply and thus load/DVS transient responses are not limited by small load current.
    The fabricated chip occupies 0.88 mm2 in a 0.35-μm CMOS process. Measurement result shows negligible output disturbance in response to 1-V line voltage step. For 500-mA step-up load current, output voltage is settled within 0.8 μs. For 0.6-V DVS, output voltage is settled within 3 μs. The line regulation performance is 2.5mV/V and the load regulation performance is 0.5mV/A. The maximum load current is 2A and peak efficiency of 96% is measured at 500 mW output power.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Tables VII List of Figures VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Recent Research 1 1.3 Proposed Control Scheme and Contributions 2 1.4 Organization 3 Chapter 2 Fundamentals of DC-DC Buck Converters 4 2.1 Specifications of DC-DC buck converters 4 2.1.1 Operation Conditions 4 2.1.2 Steady State Performances 4 2.1.3 Transient responses 5 2.1.4 Power Conversion Efficiency 6 2.2 Introduction to Conventional DC-DC Buck Converters 6 2.2.1 Operation of Power Stage 6 2.2.2 Feedback Control Schemes 10 2.2.3 Switching Control Methods 26 2.2.4 Analysis of Ripple-Based Control 32 2.2.5 Conclusion of the Closed-Loop DC-DC Buck Converter 36 Chapter 3 System Architecture 39 3.1 Operation of the Proposed Control Scheme 39 3.2 Line Transient Analysis and CCS 40 3.3 Load/DVS Transient Analysis and TOFC 42 3.4 Vo Steady-State Error and the Error Amplifier with TH Technique 45 3.5 Frequency Analysis 47 3.6 Load-Dependent Response and ERC 49 Chapter 4 Circuit Implementation 50 4.1 CCS 50 4.2 TOFC 50 4.3 The Error Amplifier with TH Technique 52 4.4 ERC 53 4.5 Other Circuits 54 4.5.1 Window Generator 54 4.5.2 Noise-Immunity S-R Latch 55 4.5.3 Dead-Time Driver 55 4.5.4 Enable and Tuning Circuits for Measurement 56 4.6 IC Layout 58 Chapter 5 Simulation and Measurement Results 60 5.1 Simulation Results 60 5.1.1 Simulation Condition 60 5.1.2 Steady State Waveforms 60 5.1.3 Regulation Performance 62 5.1.4 Power Conversion Efficiency 63 5.1.5 Load Transient Response 63 5.1.6 DVS Transient Response 64 5.1.7 Line Transient Response 66 5.1.8 Effect of Output Capacitor Variation 66 5.2 Measurement Results 69 5.2.1 Measurement Setup 69 5.2.2 Measurement Condition 69 5.2.3 Steady State Waveforms & Regulation Performance 70 5.2.4 Power Conversion Efficiency 71 5.2.5 Load Transient Response 72 5.2.6 DVS Transient Response 73 5.2.7 Line Transient Response 74 5.3 Performance Summary and Comparison 75 Chapter 6 Conclusions and Future Works 77 References 78

    [1] H. H. Wu, G. A. Covic, J. T. Boys, and D. J. Robertson, “A Series-Tuned Inductive-Power-Transfer Pickup with a Controllable AC-Voltage Output,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 98-109, Jan. 2011.
    [2] S. Bandyopadhyay and A. P. Chandrakasan, “Platform Architecture for Solar, Thermal, and Vibration Energy Combining with MPPT and Single Inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, Sep. 2012.
    [3] M. K. Kazimierczuk, M. A. Izadi, and A. Massarini, “Feedforward Control of PWM Buck Converter with Sawtooth Peak Value Modulation,” in IEEE Midwest Symposium on Circuits and Systems, 1996, pp. 885-888.
    [4] M. K. Kazimierczuk and A. J. Edstrom, “Open-Loop Peak Voltage Feedforward Control of PWM Buck Converter,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 5, pp. 740-746, May. 2000.
    [5] M. Karppanen, T. Suntio, and M. Sippola, “Dynamical Characterization of Input-Voltage-Feedforward-Controlled Buck Converter,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1005-1013, Feb. 2007.
    [6] C.-Y. Hsieh and K.-H. Chen, “Adaptive Pole-Zero Position (APZP) Technique of Regulated Power Supply for Improving SNR,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2949-2963, Jun. 2008.
    [7] J.-C. Tsai, C.-L. Chen, Y.-H. Lee, H.-Y. Yang, M.-S. Hsu, and K.-H. Chen, “Modified Hysteretic Current Control (MHCC) for Improving Transient Response of Boost Converter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1967-1979, Aug. 2011.
    [8] Y.-H. Lee, S.-C. Huang, S.-W. Wang, and K.-H. Chen, “Fast Transient (FT) Technique with Adaptive Phase Margin (APM) for Current Mode DC-DC Buck Converters,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 10, pp. 1781-1793, Oct. 2012.
    [9] P. Y. Wu and P. K. T. Mok, “Comparative Studies of Common Fix-Frequency Controls for Reference Tracking and Enhancement by End-Point Prediction,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 11, pp. 3023-3034, Nov. 2010.
    [10] Y. Y. Mai and P. K. T. Mok, “A Constant Frequency Output-Ripple-Voltage-Based Buck Converter without Using Large ESR Capacitor,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 8, pp. 748-752, Aug. 2008.
    [11] P. Y. Wu and P. K. T. Mok, “A Monolithic Buck Converter with Near-Optimum Reference Tracking Response Using Adaptive-Output-Feedback,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2441-2450, Nov. 2007.
    [12] P. Y. Wu, S. Y. S. Tsui, and P. K. T. Mok, “Area- and Power-Efficient Monolithic Buck Converters with Pseudo-Type III Compensation,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1446-1455, Aug. 2010.
    [13] S. C. Huerta, A. Soto, P. Alou, J. A. Oliver, O. Garcia, and J. A. Cobos, “Advanced Control for Very Fast DC-DC Converters Based on Hysteresis of the Cout Current,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 4, pp. 1052-1061, Apr. 2013.
    [14] E. Meyer, Z. Zhang, and Y.-F. Liu, “An Optimal Control Method for Buck Converters Using a Practical Capacitor ChargeBalance Technique,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1802-1812, Apr. 2008.
    [15] X. Shangyang, Q. Weihong, G. Miller, T. X. Wu, and I. Batarseh, “An Active Compensator Scheme for Dynamic Voltage Scaling of Voltage Regulators,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 307-311, Jan. 2009.
    [16] M. Dongsheng, K. Wing-Hung, and T. Chi-Ying, “An Integrated One-Cycle Control Buck Converter with Adaptive Output and Dual Loops for Output Error Correction,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 140-149, Jan. 2004.
    [17] Y.-H. Lee, S.-J. Wang, and K.-H. Chen, “Quadratic Differential and Integration Technique in V2 Control Buck Converter with Small ESR Capacitor,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 829-838, Apr. 2010.
    [18] F. Su and W.-H. Ki, “Digitally Assisted Quasi-V2 Hysteretic Buck Converter with Fixed Frequency and without Using Large-ESR Capacitor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2009, pp. 446-447.
    [19] Y. Zheng, H. Chen, and K. N. Leung, “A Fast-Response Pseudo-PWM Buck Converter with PLL-Based Hysteresis Control,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 7, pp. 1167-1174, Jul. 2012.
    [20] F. Su, W.-H. Ki, and C.-Y. Tsui, “Ultra Fast Fixed-Frequency Hysteretic Buck Converter with Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 815-822, Apr. 2008.
    [21] Y. Wen and O. Trescases, “DC-DC Converter with Digital Adaptive Slope Control in Auxiliary Phase for Optimal Transient Response and Improved Efficiency,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3396-3409, Jul. 2012.
    [22] E. Meyer and Y.-F. Liu, “Digital Charge Balance Controller with an Auxiliary Circuit for Improved Unloading Transient Performance of Buck Converters,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 357-370, Jan. 2013.
    [23] Y. H. Lee, S. Y. Peng, C. C. Chiu, A. C. H. Wu, K. H. Chen, Y. H. Lin, S. W. Wang, T. Y. Tsai, C. C. Huang, and C. C. Lee, “A Low Quiescent Current Asynchronous Digital-LDO with PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1018-1030, Apr. 2013.
    [24] V. Svikovic, J. A. Oliver, P. Alou, O. Garcia, and J. A. Cobos, “Synchronous Buck Converter with Output Impedance Correction Circuit,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3415-3427, Jul. 2013.
    [25] Y.-H. Lee, S.-C. Huang, S.-W. Wang, W.-C. Wu, P.-C. Huang, H.-H. Ho, Y.-T. Lai, and K.-H. Chen, “Power-Tracking Embedded Buck-Boost Converter with Fast Dynamic Voltage Scaling for the SoC System,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1271-1282, Mar. 2012.
    [26] R. B. Ridley, “A New, Continuous-Time Model For Current-Mode Control,” IEEE Trans. Power Electron., vol. 6, no. 2, pp. 271-280, Apr. 1991.
    [27] R. B. Ridley, B. H. Cho and Fred C. Y. Lee, “Analysis and Interpretation of Loop Gains of Multiloop-Controlled Switching Regulators,” IEEE Trans. Power Electron., vol. 3, no. 4, pp. 489-498, Apr. 1988.
    [28] S. Qu, “Modeling and Design Considerations of V2 Controlled Buck Regulator,” in Proc. IEEE APEC 2001, pp. 507-513.
    [29] M. Du, H. Lee and J. Liu, “A 5-MHz 91% Peak-Power-Efficiency Buck Regulator with Auto-Selectable Peak- and Valley-Current Control,” IEEE J. Solid-State Circuits, vol. 46, no. 8, pp. 1928-1939, Aug. 2011.
    [30] J. Li and Fred C. Lee, “Modeling of V2 Current-Mode Control,” in Proc. IEEE APEC 2009, pp. 298-304.
    [31] Y.-H. Lee, W.-W. Lai, W.-Y. Pai, K.-H. Chen, M.-J. Du and S.-H Cheng, “Reduction of Equivalent Series Inductor Effect in Constant On-Time Control DC-DC Converter without ESR Compensation,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2011, pp. 753–756.
    [32] W.-C. Chen, C.-S. Wang, Y.-P. Su, Y.-H. Lee, C.-C. Lin, K.-H. Chen and M.-J. Du, “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On-Time Control for Buck Converter with Multilayer Ceramic Capacitors,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2366-2376, May 2013.
    [33] F. Wang, J. Xu and B. Wang, “Comparison Study of Switching DC–DC Converter Control Techniques,” in Proc. IEEE Commun., Circuits Syst. Conf., Jun. 2006, vol. 4, pp. 2713–2717.
    [34] J. Sun, “Characterization and Performance Comparison of Ripple-Based Control for Voltage Regulator Modules,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 346-353, Mar. 2006.
    [35] Y. Wang and D. Ma, “A 450-mV Single-Fuel-Cell Power Management Unit with Switch-Mode Quasi-V2 Hysteretic Control and Automatic Startup on 0.35-μm Standard CMOS Process,” IEEE J. Solid-State Circuits, vol. 47, no. 9 pp. 2216-2226, Sep. 2012.
    [36] S. Lee, S. Jung, J. Huh, C. Park, C.-T. Rim and G.-H. Cho, “Robust and Efficient Synchronous Buck Converter with Near-Optimal Dead-Time Control,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2011, pp. 392-393.

    下載圖示 校內:2016-08-21公開
    校外:2016-08-21公開
    QR CODE