簡易檢索 / 詳目顯示

研究生: 陳逸青
Chen, Yi-Ching
論文名稱: 硫化錫緩衝層對於二甲基亞碸溶液法製作銅鋅錫硫硒薄膜太陽能電池影響之研究
Effect of the SnS buffer layer on the Cu2ZnSn(S,Se)4 thin-film solar cell fabricated by dimethyl-sulfoxie-based solution process
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 銅鋅錫硫硒溶液多層加熱硫化錫緩衝層
外文關鍵詞: CZTSSe, Solution, Multi-stage annealing, SnS, Buffer layer
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CZTSSe 為具有潛力的光電材料,與 CdTe 或 CIGS 相比,其組成元素地殼蘊含 量豐富,成本低廉且對環境友善。
    本研究使用二甲基亞碸溶液旋轉塗布法製作 CZTSSe 薄膜,研究中探討不同烘烤 溫度對於前驅物與硒化後之 CZTSSe 薄膜之影響,利用 SEM、EDS 分析硒化前後薄 膜與成分比例之變化,XRD 與 Raman 確認 CZTSSe 薄膜之晶體結構與晶粒大小。
    由結果顯示,烘烤溫度較高,薄膜之成分組成較符合合理之比例,退火後其表面 緻密度較高;而前驅物塗布層數也會影響薄膜之成分之比例與退火後的表面、側面形 貌。
    在退火過程中使用多階段退火的方式能夠使表面緻密度提高,使用此方法所製作 之元件效率 1.87%,開路電壓為 0.22V,短路電流密度為 30.3mA/cm2,填充因子為 28.2%。
    在塗佈前驅物溶液前先塗佈硫化錫緩衝層,可以改善 CZTSSe 薄膜與 Mo 基板之 間的孔隙及裂紋,對於最後製作之元件效率有所之助益,效率提升至 2.54%,開路電 壓為 0.21V,短路電流為 36.38mA/cm2,填充因子為 33.3%,短路電流與填充因子的 數值皆上升。

    CZTSSe is a potential material for thin film solar cells since its constituents are earth abundant, low cost and environment friendly material compared to CIGS or CdTe. In this study, CZTSSe films were prepared by spin coating method of dimethyl hydrazine(DMSO) solution. The effects of different baking temperatures on the precursor and selenized CZTSSe film were investigated. The changes of film’s morphology and composition ratio before and after selenization were analyzed by SEM and EDS. XRD and Raman confirmed the crystal secondary phase and grain size of the CZTSSe film.The result shows the higher baking temperature , the surface morphology more denser and the
    competition ratio closer to the ideal .
    The multi-stage annealing make surface much denser, which is beneficial to the performance of the device . The best solar cells showed a conversion efficiency of 1.87%, open-circuit voltage of 0.22V, short-circuit current of 30.3mA/cm2, fill factor of 28.2%.
    In order to improve the high-density voids and cracks between the CZTSSe film and Mo substrate. we present the insertion of a SnS buffer layer at Mo/CZTS interface to inhibit the undesired reaction and improve the thin-film quality. Crack-free and smooth morphology was obtained. The cell efficiency was significantly improved. The best solar cells showed a conversion efficiency of 2.54%, open-circuit voltage of 0.21V, short- circuit current of 36.38mA/cm2, fill factor of 33.3%.

    摘要..........I Abstract .......... II 致謝........... XII 目錄.......... XIII 圖目錄.......... XVI 表目錄......... XVIII 第一章 緒論.........1 1.1 前言.............1 1.2 A 太陽能電池簡介 .......... 2 1.2.1 矽晶太陽能電池.........2 1.2.2 薄膜太陽能電池.........2 1.2.3 CZTSSe 太陽能電池.........2 第二章 理論基礎.........4 2.1 半導體...........4 2.2 P-N 接面 ............ 5 2.3 異質接面...........6 2.4 金屬半導體接面.........7 2.4.1 蕭特基能障(Schottky barrier) ......8 2.4.2 歐姆接觸(Ohmic contact).......8 2.5 太陽能電池原理.........9 2.5.1 太陽輻射(Solar radiation) ........9 2.5.2 操作原理.........11 2.5.3 太陽能電池等效電路.......12 XIII 2.5.4 串連電阻與並聯電阻的效應.......13 2.5.5 太陽能電池的參數.........14 2.5.6 太陽能電池量子效率.......16 2.6 銅鋅硫錫硒(CZTSSe)太陽能電池文獻回顧....17 2.6.1 材料特性.........17 2.6.2 CZTSSe 的晶格缺陷(Defect).......19 2.6.3 元素比例與二次相(Secondaryphase).....20 2.6.4 緩衝層對於 CZTSSe 吸收層的影響....22 2.6.5 CZTSSe 太陽能電池研究發展及效率較佳團隊..23 2.7 研究動機...........24 第三章 實驗方法.......25 3.1 太陽能電池結構簡介.........25 3.1.1 基板...........25 3.1.2 背電極...........26 3.1.3 吸收層...........26 3.1.4 緩衝層(Buffer layer).......26 3.1.5 窗口層(Window layer)........27 3.1.6 前電極...........27 3.2 實驗流程...........27 3.2.1 實驗流程架構.........27 3.2.2 鉬基版準備與清洗.........27 3.2.3 銅鋅錫前驅物準備與塗布.......28 3.2.4 硒化爐管製程.........28 3.2.5 薄膜表面處理.........29 3.2.6 緩衝層 CdS 製備........29 3.2.7 窗口層製備.........30 3.2.8 金屬電極製備.........31 3.3 儀器介紹...........31 3.3.1 高解析掃描顯微鏡(HR-SEM).......31 3.3.2 多功能 X 光繞射儀........33 3.3.3 拉曼光譜分析.........34 3.3.4 太陽光模擬器與 IV 量測系統.......35 XIV 第四章 結果與討論.......37 4.1 前期研究...........37 4.1.1 前驅物塗布層數對於 CZTSSe 薄膜之影響...45 4.1.2 不同退火參數對 CZTSSe 薄膜之影響.....49 4.1.3 結論...........55 4.2 緩衝層(SnS)對於 CZTSSe 薄膜之影響 .....56 4.2.1 結論...........64 第五章 總結與未來規劃.......67 5.1 總結...........67 5.2 未來規劃...........67 Reference .......... 68

    1. Q. Guo, H.W.H., and R. Agrawal, <Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells.pdf>. Journal of the American Chemical Society, vol. 131, pp. 11672-11673, 2009/08/26.
    2. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 1961. 32(3): p. 510-519.
    3. Khare, A., et al., Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. Journal of Applied Physics, 2012. 111(8): p. 083707.
    4. Chen, S., et al., Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI andI-III- VI2compounds. Physical Review B, 2009. 79(16).
    5. Chen, S., et al., Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters, 2010. 96(2): p. 021902.
    6. Walsh, A., et al., Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Advanced Energy Materials, 2012. 2(4): p. 400-409.
    7. Katagiri, H., <Survey of Development of CZTS-based Thin Film Solar Cells>.
    3rd International Conference on Photonics, 2012.
    8. T. Tanaka, T.S., K. Saito, Q. Guo, M. Nishio, K. M. Yu, et al, <Existence and
    removal of Cu2Se second phase in coevaporated Cu2ZnSnSe4 thin films>.
    Journal of Applied Physics, vol. 111, p. 053522, 2012.
    9. Tang, Z., et al., Reduction of secondary phases in Cu2SnSe3 absorbers for solar
    cell application. Journal of Alloys and Compounds, 2014. 608: p. 213-219.
    10. Vauche, L., et al., Detrimental effect of Sn-rich secondary phases on Cu2ZnSnSe4 based solar cells. Journal of Renewable and Sustainable Energy,
    2016. 8(3): p. 033502.
    11. Temgoua, S., et al., Effects of SnSe 2 secondary phases on the efficiency of Cu
    2 ZnSn(S x ,Se 1−x ) 4 based solar cells. Thin Solid Films, 2015. 582: p. 215-
    219.
    12. Fairbrother, A., et al., Secondary phase formation in Zn-rich Cu2ZnSnSe4-
    based solar cells annealed in low pressure and temperature conditions. Progress in Photovoltaics: Research and Applications, 2014. 22(4): p. 479-487.
    68
    13. W.-C. Hsu, I.R., C. Beall, C. DeHart, G. Teeter, B. To, et al., <The effect of Zn excess on kesterite solar cells>. Solar Energy Materials and Solar Cells, vol. 113, 2013: p. pp. 160-164.
    14. Jörn Timo Wätjen, J.E., Marika Edoff, and Charlotte Platzer-Björkman, <Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells>. APPLIED PHYSICS LETTERS 100, 173510 (2012), 2012.
    15. Olekseyuk, I.D., I.V. Dudchak, and L.V. Piskach, Phase equilibria in the Cu2S– ZnS–SnS2 system. Journal of Alloys and Compounds, 2004. 368(1-2): p. 135- 143.
    16. Scragg, J.J., <Studies of Cu2ZnSnS4 films prepared by sulfurisation of electrodeposited precursors>. University of Bath, 2010.
    17. Giraldo, S., et al., Cu2ZnSnSe4solar cells with 10.6% efficiency through innovative absorber engineering with Ge superficial nanolayer. Progress in Photovoltaics: Research and Applications, 2016. 24(10): p. 1359-1367.
    18. Takahiro Mise1, S.T., Tatsuo Fukano1, Kazuo Higuchi1, Tsukasa Washio2, Kazuo Jimbo2 and Hironori Katagiri, <Improving the photovoltaic performance of co-evaporated Cu2ZnSnS4 thin-film solar cells by incorporation of sodium from NaF layers>. Prog. Photovolt: Res. Appl. 2016; 24:1009–1015, 2016.
    19. Lee, Y.S., et al., Atomic Layer Deposited Aluminum Oxide for Interface Passivation of Cu2ZnSn(S,Se)4Thin-Film Solar Cells. Advanced Energy Materials, 2016. 6(12): p. 1600198.
    20. Yan, C., et al., Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks. Solar Energy Materials and Solar Cells, 2017. 160: p. 7-11.
    21. Chen, H.-J., et al., Impact of SnS Buffer Layer at Mo/Cu2ZnSnS4Interface. Journal of the American Ceramic Society, 2016. 99(5): p. 1808-1814.
    22. Nakazaw, K.I.a.T., <Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films>. Jpn. J. Appl. Phys. 27 2094, 1988.
    23. Hironori Katagiri*, N.S., Shima Hando, Suguru Hoshino, Jiro Ohashi, Takaharu Yokota, <Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors>. Solar Energy Materials and Solar Cells 49 (1997)407-414, 1997.
    24. Jae-Seung Seola, Sang-Yul Leea, Jae-Choon Leea, Hyo-Duk Namb, Kyoo-Ho Kima, <Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process>. Solar Energy Materials & Solar Cells 75
    69
    (2003) 155–162, 2003.
    25. Katagiri, H., <Survey of Development of CZTS-based Thin Film Solar Cells >.
    3rd International Conference on Photonics 2012, Penang, 1-3 October 2012,
    2012.
    26. Zoppi, G., et al., Cu2ZnSnSe4thin film solar cells produced by selenisation of
    magnetron sputtered precursors. Progress in Photovoltaics: Research and
    Applications, 2009. 17(5): p. 315-319.
    27. Tanaka, K., N. Moritake, and H. Uchiki, Preparation of Cu2ZnSnS4 thin films
    by sulfurizing sol–gel deposited precursors. Solar Energy Materials and Solar
    Cells, 2007. 91(13): p. 1199-1201.
    28. Tanaka, K., et al., Cu2ZnSnS4Cu2ZnSnS4 thin film solar cells prepared by non-
    vacuum processing. Solar Energy Materials and Solar Cells, 2009. 93(5): p.
    583-587.
    29. Tanaka, K., et al., Chemical composition dependence of morphological and
    optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Solar Energy Materials and Solar Cells, 2011. 95(3): p. 838-842.
    30. <Fabrication of Cu2ZnSnS4Thin-Film Solar Cell Prepared by Pulsed Laser Deposition>.
    31. Jonathan J. Scragg1, P.J.D., 1, Laurence M. Peter*, 1, Guillaume Zoppi2, and Ian Forbes, <New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material>. phys. stat. sol. (b) 245, No. 9, 1772 – 1778 (2008) / DOI 10.1002/pssb.200879539, 2008.
    32. Takuya Kato*, H.H., Noriyuki Sakai, and Hiroki Sugimoto, <Buffer/absorber interface study on Cu2ZnSnS4 and Cu2ZnSnSe4 based solar cells: band alignment and its impact on the solar cell performance>. 8th European Photovoltaic Solar Energy Conference and Exhibition, 2013.
    33. Lee, Y.S., et al., Cu2ZnSnSe4Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length. Advanced Energy Materials, 2015. 5(7): p. 1401372.
    34. Wei Wang, M.T.W., Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, Yu Zhu, and David B. Mitzi, <Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency>. Adv. Energy Mater. 2014, 4, 1301465, 2014.
    35. Xin, H., et al., Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency. Phys
    70
    Chem Chem Phys, 2015. 17(37): p. 23859-66.
    36. Oueslati, S., et al., Physical and electrical characterization of high-
    performance Cu 2 ZnSnSe 4 based thin film solar cells. Thin Solid Films, 2015.
    582: p. 224-228.
    37. Riha, S.C., B.A. Parkinson, and A.L. Prieto, Compositionally Tunable
    Cu2ZnSn(S1–xSex)4Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin Films. Journal of the American Chemical Society, 2011. 133(39): p. 15272-15275.

    無法下載圖示 校內:2023-07-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE