簡易檢索 / 詳目顯示

研究生: 黃順聰
Huang, Shun-Tsung
論文名稱: 利用乾式蝕刻方法製作圓錐形的矽場發射體與特性研究
Fabrication and Characteristics of Conical Silicon Field Emitters employing Dry etching
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 58
中文關鍵詞: 乾式蝕刻矽場發射體
外文關鍵詞: Silicon Field Emitters, Dry etching
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在真空微電子中,大多數新的技術需要使用圓錐型且尖銳的尖端作為一個電子的發射體。在本論文中,我們將改善發射體的曲率半徑和高度及圓錐角度以有效達到增強場增強因子(field enhancement factor β)。再本實驗中,我們開發一種製造程序是利用一個純的SF6和一個混合的SF6和O2作為等向性乾式蝕刻氣體,然後再經由熱氧化的技術去改善發射體的幾何形狀。我們也成功地製作出曲率半徑為5nm,高度為4.4um,圓錐角度為30°的發射體。而在10uA時,啟動電場為4.8 V/um,而在最大電場時(電壓為1100V),相對的最大電流密度為60.4 uA/cm2。

    A number of new technologies require the use of conical and sharp tips to serve as electron emitters in the vacuum microelectronics. In this paper, we improved radius of curvature, height and cone angle of emitters, in order to reach the enhancement result of field enhancement factor (β). In this experiment, we developed a fabrication process to improve geometry of emitter by employing isotropic dry etching in pure SF6 and a mixture of SF6 and O2 followed by thermal oxidation technique. In the end, we successfully achieved excellent conical emitters with 5-10 nm radius of curvature, 4.4 um height, 60° cone angle. The conical silicon emitters current-voltage characteristics shows that Eto = 4.8 V/um (turn-on electrics field) compare with 10 uA/cm2, maximum current density J = 60.4 uA/cm2 at E = 8.14V/um (Voltage:1100v).

    Contents Abstract (in Chinese)------------------------------------I Abstract (in English) ----------------------------------II Acknowledgement-----------------------------------------IV Contents-------------------------------------------------V Figure Captions----------------------------------------VII Table Captions------------------------------------------IX Chapter 1 Introduction 1-1. History of Vacuum Microelectronics------------------ 1 1-2. The theory of field emission ----------------------- 3 Chapter 2 Experimental System Setup 2-1. Introduction---------------------------------------- 7 2-2. Photo-lithography----------------------------------- 8 2-3. Inductively Coupled Plasma etching and Plasma Enhanced Chemical Vapor Deposition systems 2.3.1 Plasma Enhanced Chemical Vapor Deposition---------- 9 2.3.2 Inductively Coupled Plasma etching systems ---------9 2.3.3 Etch Mechanism------------------------------------ 11 2-4. Thermal Oxidation-----------------------------------11 2-5. Scanning electron microscope----------------------- 12 2-6. Field Emission Measurement------------------------- 14 Chapter 3 Fabrication of Conical Silicon Field Emitters 3-1. Introduction--------------------------------------- 23 3-2. Fabrication Process-------------------------------- 24 3-3. Dry Etching --------------------------------------- 25 3-3.1 Effect of RF-Power ------------------------------- 25 3-3.2 Effect of SF6 Flow Rate--------------------------- 26 3-3.3 Effect of O2 Flow Rate---------------------------- 26 3-4. Forming of Conical Silicon Field Emitters---------- 27 3-5. Characterization of Field Emission----------------- 28 Chapter 4 Conclusion-------------------------------------49 Chapter 5 Future Work----------------------------------- 50 References-----------------------------------------------53

    [1] Hyung Soo Uh, Sang Jik Kwon, and Jong Duk Lee, “A
    Novel Fabrication Process of a Silicon Field Emitter
    Array with Thermal Oxide as a Gate Insulator”, IEEE
    Tran. Electron. Dev. Letter. vol. 16, p.488 (1995)
    [2] Meng Ding, Han Kim, and Akintunde I. Akinwande,”
    Highly Uniform and Low Turn-On Voltage Si Field
    Emitter Arrays Fabricated Using Chemical Mechanical
    Polishing”, IEEE Tran. Electron. Dev. Letter. vol.
    21, p.66 (2000)
    [3] D. Temple, “Recent progress in field emitter array
    development for high performance applications”,
    Mater. Sci. Eng., vol. R24, p. 185–239, 1999.
    [4] H. F. Gray, “Field-emitter displays (FEDs) for
    cockpit application”, Cockpit Displays, vol. 2219,
    p.44–50, 1994.
    [5] C. A. Spindt, “Microfabricated field-emission and
    field-ionization sources”, Surf. Sci., vol. 266,
    p.145–154, 1992.
    [6] G. Bennig, H. Rohrer, C. Gerber, and E. Weibel, “7 x
    7 reconstruction on Si( 111) resolved in real space”,
    Phys. Rev. Lett., vol. 50, p. 120, 1983.
    [7] H. H. Busta, J. E. Pogemiller, and B. J. Zimmerman,
    “The field emission triode as a displacement/process
    sensor”, J. Micromech. Microeng., p. 45, 1993.
    [8] R. W. Wood, “A new form of cathode discharge and the
    production of X-rays”, Together with some notes of
    diffraction, Phys. Rev. 5(1), p.1-10 (1897)
    [9] R. H. Fowler and L. W. Nordheim, “Electron emission
    in intense electric fields”, Proc. Royal Soc.
    (London). A119 (A781), p.173-181 (1928)
    [10] E. W. Muller, Z. Techn. Physik 37 (22/23), p.838(1936)
    [11] E. W. Muller, Z. Techn. Physik 106 (9/10), p.541(1937)
    [12] F. M. Charbonnier, J. B. Barbour, J. L. Brewster, W.
    P. Dyke, and F. J Grundhauer, “Intense nanosecond
    electron beams”, Trans. IEEE NS-14(3), p.789-793
    (1967)
    [13] W. P. Dyke, and F. M. Charbonnier, “Advanced
    electron tube techniques”, Proceeding of the VI
    National Conference (1963)
    [14] W. P. Dyke, “Advances in field emission”, Sci.
    Amer. 210(1), 108 (1964)
    [15] A. V. Crewe, D. N. Eggenbrger, J. Wall, and L. M.
    Welter, “Electron gun using a field emission
    source”, Rev. Sci. Instrum. 39(4), p.576 (1968)
    [16] A. V. Crewe, J. Wall, and L. M. Welter, “High-
    resolution scanning transmission electron
    microscope”, J. Appl. Phys. 39(13), p.5861 (1968)
    [17] B. Reihl and J. K.Gimzewski, “Field-emission
    scanning Auger microscope (FESAM)”, Surf. Sci. 189,
    36 (1987)
    [18] N.Samoto et, “A stable high-brightness electron-gun
    with Zr/W-tip for nanometer lithography”, 1.
    Emission properties in Schottky-emission and thermal
    field-emission regions, Jpn J. Appl. Phys. 24(6),
    p.766 (1985)
    [19] K.R. Shoulders, “Microelectronics using electron
    beam activated machining techniques”, Adv. Computers
    2 p.135 (1961)
    [20] C. A. Spindt, “A thin film field emission cathode”,
    J. Appl. Phys., vol. 39, p. 3504-3505, 1968.
    [21] C. A. Spindt, I. Brodie, L. Humpnrey, and E. R.
    Westerberg, “Electrical properties of thin-film
    field emission cathodes with molybdenum cones”, J.
    Appl. Phys., vol. 47, p. 5248, 1976.
    [22] R. N. Thomas and H. C. Nathanson,” Photosensitive
    field emission from Silicon point arrays”, Appl.
    Phys. Lett., vol. 21, p. 384-386, 1972.
    [23] G.H. Chen, R.Q. Cai, X.M. Song, and J.X. Deng,”
    Preparation and field electron emission of
    microcrystalline diamond deposited on a porous
    silicon substrate”, Materials Science and
    Engineering B107 p. 233–236 (2004)
    [24] Chia-Fu Chen and Hui-Chen Hsieh,” Emission current
    influence of gated structure and diamond emitter
    morphologies in triode-type field emission arrays”,
    Diamond and Related Materials 9 p.1257–1262 (2000)
    [25] Jong-Lam Lee et.” The effect of Pd coating on
    electron emission from silicon field emitter
    arrays”, J. Appl. Phys., vol. 87, No. 10, p.15 (2000)
    [26] Mohammad R. Rakhshandehroo, and Stella W. Pang,”
    High Current Density Si Field Emission Device with
    Plasma Passivation and HfC Coating”, IEEE
    TRANSACTIONS ON ELECTRON DEVICES, vol. 46, p.792
    (1999)
    [27] D. W. Branston and D. Stephani,” Field Emission from
    Metal-Coated Silicon Tips”, IEEE Tran. Electron.
    Dev. vol. 38, p.2329 (1991)
    [28] ROBERT B. MARCUS, K. KEN CHIN, YUN YUAN, HONJUN
    WANG,AND WILLIAM N. CARR, “Simulation and Design of
    Field Emitters”, IEEE Tran. Electron. Dev. vol. 37,
    p.1545 (1990)
    [29] Takao Utsumi, “Vacuum Keynote Address
    Microelectronics: What's New and Exciting”, IEEE
    Tran. Electron. Dev. vol. 38, p.2276 (1991)
    [30] Meng Ding, Guobin Sha, and Akintunde I. Akinwande,
    “Silicon Field Emission Arrays With Atomically Sharp
    Tips: Turn-On Voltage and the Effect of Tip Radius
    Distribution”, IEEE Tran. Electron. Dev. vol. 49,
    p.2333 (2002)
    [31] Richard G.Forbes, C.J. Edgcombe, U.Valdre, “Some
    comments on models for field enhancement”,
    Ultramicroscopy 95 (2003) 57–65.
    [32] J.F. Mologni, M.A.R. Alves, E.S. Braga, “Numerical
    study on performance of pyramidal and conical
    isotropic etched single emitters”, Microelectronics
    Journal 37 (2006) p.152–157.
    [33] S.M. Sze, Physics of Semiconductor Devices, Wiley,
    New York, 1981.
    [34] R. E. Burgess, H. Kroemer, and J. M. Honston,
    “Corrected value of Fowler-Norheim field emission
    function v(y) and s(y)”, Phys. Rev., vol. 1, No. 4,
    p. 515, 1953.
    [35] M.A.R. Alves, D.F. Takeuti, E.S. Braga. “Fabrication
    of sharp silicon tips employing anisotropic wet
    etching and reactive ion etching”, Microelectronics
    Journal 36 (2005) p.51–54
    [36] D.F. Takeuti, M.N. Tirolli, C.L. Danieli, M.A.R.
    Alves_, E.S. Braga, P.H.L.de Faria. “Fabrication of
    silicon field-emission arrays using masks of
    amorphous hydrogenated carbon films”,
    Microelectronics Journal 38 (2007) p.31–34
    [37] M. R. Rakhshandehroo, J. W. Weigold, W.-C. Tian, and
    S. W. Pang. “Dry etching of Si field emitters and
    high aspect ratio resonators using an inductively
    coupled plasma source”, J. Vac. Sci. Technol. B 16,
    p.5, 1998.
    [38] D. Resnik, D. Vrtacnik, U. Aljancic, M. Mozek, S.
    Amon. “Different aspect ratio pyramidal tips
    obtained by wet etching of (100) and (111) silicon",
    Microelectronics Journal 34 (2003) p.591–593.
    [39] T. S. Ravi, R. B. Marcus, and D. Liu, “Oxidation
    sharpening of silicon tips”, J. Vac. Sci. Technol.
    B, Microelectron., vol. 9, no. 6, pp.2733–2737, 1991.
    [40] S.M. Sze, Semiconductor Devices of Physics and
    Technology, Wiley, New York, 2nd Edition 2002.
    [41] Hong Xiao, translated by J.J. Lo & D.C. Cheng,
    Introduction to Semi-Conductor Process, Eurasia, 2000.
    [42] C.A. Spindt, C.E. Holland, A. Rosengreen, I. Brodie,
    “Field-Emitter Arrays for Vacuum Microelectronics”,
    IEEE Tran. Electron. Dev. vol. 38, p.2355 (1991)
    [43] IVOR BRODIE, and PAUL RICHARD SCHWOEBEL, “Vacuum
    Microelectronic Devices”, IEEE Proc. vol. 82,
    p.1006 (1994).
    [44] H. H. Busta, J. E. Pogemiller and B. J. Zimmerman,
    “The field emitter triode as a I displacement/pressure
    sensor”, J. Micromech Microeng. (3) p.49-56, 1993.
    [45] D. Palmer, H. F. Gray, J. Mancusi, D. Temple, and C.
    Ball, J. L. Shaw, G. E. McGuire”Silicon field
    emitter arrays with low capacitance and improved
    transconductance for microwave amplifier
    applications”, J. Vac. Sci. Technol. B 13(2), p.576,
    1995 .
    [46] Yasushi Toma, Seigo Kanemaru, and Junji Itoh,
    “Electron-beam characteristics of double-gated Si
    field emitter arrays”, J. Vac. Sci. Technol. B 14
    (3), p.1902, 1996.
    [47] K. L. Jensen, “Field emitter arrays for plasma and
    microwave source applications”, Phys. Plasmas, vol.
    6, p.2241, 1999.
    [48] Takao Utsumi, “Vacuum Keynote Address
    Microelectronics: What’s New and Exciting”, IEEE
    Tran. Electron. Dev. vol. 38, p.2276 (1991)
    [49] J.F. Mologni, M.A.R. Alves, E.S. Braga, “Numerical
    study on performance of pyramidal and conical
    isotropic etched single emitters”, Microelectronics
    Journal 37 (2006) p.152–157.
    [50] E. C. Boswell and P. R. Wilshow, “ Emission
    characteristics and morphology of wet etched cathodes
    in p-type silicon”, J. Vac. Sci. Technol. B 11,
    p.412 1993.
    [51] Johann W. Bartha, Johann Greschner, M. Puech and P.
    Maguin,"Low temperature etching of Si in high density
    plasma using SF6/O2”,
    Microelectronic Engineering 27 (1995) p.453-456

    下載圖示 校內:2017-06-26公開
    校外:2022-06-26公開
    QR CODE