簡易檢索 / 詳目顯示

研究生: 蔡孟芬
Tsai, Meng-Fen
論文名稱: 正向性平板之孔洞形狀最佳化
Shape Optimization of Holes in Orthotropic Plates
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 最佳化孔洞應力集中因子
外文關鍵詞: Holes, Stress concentration, Optimal
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要以最佳化理論找出含孔洞之正交性平板在承受負載狀況下的孔洞最佳形態,由於平板中含有孔洞會形成應力集中現象,隨著孔洞的幾何外形、平板材料、及負載情況的不同,所形成的應力集中現象也會改變,故在最佳化過程中以應力集中因子為目標函數,孔洞之形狀參數為設計變數,孔洞面積保持固定為主要限制條件。有別於過去的文獻中,大都分析單一種孔洞形態承受負載後的情況,本文所找出承受負載後的最佳孔洞形態可提供工程應用上做參考。

    One of the most important problems in the design of plate structures is to determine and minimize the stress concentration due to the presence of holes and other discontinuities. There is a great deal of information on this classical problem. Because the stress concentration is of more concern, this paper tries to find optimal shapes of holes in infinity plates under uniaxial and biaxial loading conditions. The optimal shape offers the lowest possible stress concentration , whose hole area keeps constant.

    目 錄 摘 要 I Abstract II 誌 謝 III 目 錄 IV 表目錄 VI 圖目錄 VIII 符號說明 X 第一章 緒 論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 4 第二章 孔洞應力分析 5 2.1 多邊形孔洞 5 2.2 應力集中因子 7 第三章 最佳化設計 19 3.1 數學模型 19 3.2 最佳化搜尋 23 第四章 結果與討論 26 4.1 無限板 26 4.2 有限板 30 第五章 結論 32 參考文獻 34 附錄 37 附 表 40 附 圖 64

    [1] S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, Moscow: MIR, 1963.
    [2] S.G. Lekhnitskii, Anisotropic Plates, New York: Gordon and Breach Science Publishers, 1968.
    [3] T. Ting, Anisotropic Elasticity: Theory and Applications, New York: Oxford Science Publications, 1996.
    [4] C. Hwu, Anisotropic Elastic Plates, New York: Springer, 2010.
    [5] G. Kirsch, "Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre.," Zeitschrift desVereines deutscher Ingenieure, vol. 42, pp. 797-807, 1898.
    [6] G. Kolosoff and C. Inglis, "Solution of plate with an elliptical hole.," Transactions of the Royal Institute, 1913.
    [7] R. Evan-Iwanowski, "Stress Solutions for an Infinite Plate with Triangular Inlay," ASME JOURNAL OF APPLIED MECHANICS, vol. 23, pp. 336-338, 1956.
    [8] Y. Yu, "Solutions for Exterior of General Ovaloid Under Arbitrary Loading and Its Application to Square Rigid Core Problems," Proceedings of the First National Congress of Applied Mechanics, pp. 22-236, 1952.
    [9] C. S. Chang and H. D. Conway, "A Parametric Study of a Complex Variable Method for Analyzing the Stress in an Infinite Plate Containing a Rigid Rectangular Inclusion," Int. J. Solids Structures, vol. 4, pp. 1057-1066, 1968.
    [10] T. D. Jong, "Stresses Around Rectangular Holes in Orthotropic Plates," J. Comp. Mat.,, vol. 15, pp. 311-328, 1981.
    [11] K. Rajaiah and N. K. Naik, "Optimum Quasi-Rectangular Holes in Infinite Orthotopic Plates Under Inplane Loadings," ASME JOURNAL OF APPLIED MECHANICS, vol. 50, pp. 891-892, 1983.
    [12] N. I. Muskhelishvili, “Some Basic Problems of the Mathematical Theory of Elasticity,” Noordhoff Pub., 1953.
    [13] C. Hwu, "Anisotropic Plates With Various Openings Under Uniform Loading or Pure Bending," ASME J. Applied Mechanics, vol. 57, pp. 700-706, 1990.
    [14] A. J. Durell and K. Rajaiah, "Quasi-Square Hole With Optimum Shape in an Infinite Plate Subjected to In-Plane Loading," Oakland University ONR Report, vol. 49, 1979.
    [15] G. S. Bjorkman and R. Richards, "Harmonic Holes—An Inverse Problem in Elasticity," ASME JOURNAL OP APPLIED MECHANIC, vol. 43, pp. 414-418, 1976.
    [16] G. S. Bjorkman and R. Richards, "Harmonic Holes for Nonconstant Field," ASME JOURNAL OF APPLIED MECHANICS, vol. 46, pp. 573-576, 1979.
    [17] E. Schnack, "An Optimization Procedure for Stress Concentration by the Finite-Element Technique," International Journal for Numerical Methods in Engineering, vol. 14, pp. 115-124, 1979.
    [18] H. Neuber, Kerbspannungslehre Grundlagen fur genaue Festigkeitsberechnung, 2 ed., Berlin: Springer-Verlag, 1958.
    [19] H. Neuber, "Zur Optimierung der Spannungskonzentration," Continuum Mechanics and Related Problems of Analysis, pp. 375-380, 1972.
    [20] G. P. Cherepanov, "Inverse Problems of the Plane Theory of Elasticity," Journal of Applied Mathematics and Mechanics, pp. 963-979, 1974.
    [21] N. V. Banichuk, "On a Variational Problem With Unknown Boundaries and the Determination of Optimal Shapes of Elastic Bodies," Journal of Applied Mathematics and Mechanics, vol. 39, pp. 1082-1092, 1975.
    [22] L. Wheeler, "On the Role of Constant-Stress Surfaces in the Problem of Minimizing Elastic Stress Concentration," International Journal of Solids and Structures, vol. 12, pp. 779-789, 1976.
    [23] S. K. Dhir, "Optimization in a Class of Hole Shapes in Plate Structures," Journal of Applied Mechanics, vol. 48, pp. 905-908, 1981.
    [24] 李政錡,「多孔洞異向性板之邊界元素設計」,碩士論文,成功大學航空太空工程研究所,2012年
    [25] R. Byrd, J. C. Gilbert and J. Nocedal, "A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming," Mathematical Programming, vol. 89, p. 149–185, 2000.
    [25] R. Jones, Mechanics of Composite Materials, Washington, DC: Scripta.

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE