簡易檢索 / 詳目顯示

研究生: 王永麟
Wang, Yung-lin
論文名稱: 高動態範圍影像色調映射之評測研究
A Study on Tone Mapping Assessment for High Dynamic Range Images
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 81
中文關鍵詞: 高動態範圍影像壓縮高動態範圍影像影像評測
外文關鍵詞: High Dyanmic Range, HDR, HDRI, Tone Mapping Assessment
相關次數: 點閱:129下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,高動態範圍影像壓縮已成為一個熱門的研究議題。高動態範圍影像
    壓縮又稱為HDR色調映射(HDR Tone-Mapping),是把高動態範圍的影像,常被
    稱為HDR影像或HDRI,映射到只能顯示和處理低動態範圍影像(常被稱為LDR影
    像或LDRI)的裝置,如LCD或CRT顯示器。HDR色調映射主要的目的是希望壓縮
    過後的影像能盡量保有原來的資訊,並且能有影像強化的效果,達到人眼能觀
    察到的最好狀態。然而,由於壓縮前後的影像的動態範圍並不一樣,所以當要
    評測HDR色調映射效果的時候,一般客觀的影像評測指標,如MSE、PSNR等指
    標並非適用。2013年Hojatollah Yeganeh和Zhou Wang提出針對HDR色調映射的指標-Tone Mapping Quality Index,簡稱TMQI,被視為這種處理前後動態範圍不同影像的評測中相當具有代表性的指標。本篇將透過文獻回顧選出比較具有代表性的HDR色調映射的7個演算法,並找出曾用在HDR色調映射或新提出的客觀評測指標來比較各種演算法的效果;除此之外也設計了一個基於影像特徵主觀的實驗,透過人眼來觀察各演算法在不同類型的影像表現的優劣;最後將主觀結果和和客觀分數相比較,分析出客觀指標和影像特徵的關聯性。

    High dynamic range image compression, otherwise known as high dynamic range(HDR) tone mapping, is a popular topic of research in image processing. Most display devices can only process low dynamic range (LDR) images; therefore, suitable HDR tone mapping operators are required for the presentation of HDR images. Unfortunately,HDR tone mapping alters the dynamic range of LDR images, making general image quality indexes, such as MSE and PSNR, unsuitable. Yeganeh and Wang (2013)therefore proposed the tone mapping quality index (TMQI), outlining the criteria by
    which to assess HDR tone mapping. This article addresses seven existing tone mapping operators as representative examples of the techniques commonly used in HDR tone
    mapping. We reviewed the objective assessment indexes used in HDR tone mapping and employed them to compare the seven operators. We also examined specific examples to evaluate the operators according to image attributes. Finally, we sought to quantify the correlation between image attributes and image quality indexes for HDR in order to assess tone mapping methods.

    中文摘要 i Abstract ii Acknowledgements iii Contents iv List of Tables vi List of Figures vii 1 Introduction 1 2 Background 3 2.1 Dynamic Range and the Human Visual System 3 2.2 High Dynamic Range Images 4 2.3 High Dynamic Image Tone Mapping 6 2.3.1 Global Tone Mapping Operators 8 2.3.2 Local Tone Mapping Operators 10 3 Tone Mapping Operators Considered 17 3.1 Tone Mapping Operator Based on Histogram Adjustment 18 3.2 Tone Mapping Operator Base on Photographic 22 3.3 Tone Mapping Operator Based on Bilateral Filter 27 3.4 Tone Mapping Operator Based on Gradient 30 3.5 Tone Mapping Operators Based on Retinex 31 3.6 Tone Mapping Based on iCam 34 3.7 Tone Mapping Operator Based on Human Visual System 37 4 Assessment for Tone Mapping Operators 43 4.1 Structural Similarity Index 43 4.2 Tone Mapping Quality Index 45 4.3 TMQI with Visual Saliency 47 4.4 Information Fidelity Criterion 50 5 Experimental Results 51 5.1 Objective Assessment Results 51 5.1.1 The design of objective experiment 51 5.1.2 Objective Assessment Results 54 5.2 Subjective Assessment Results 61 5.2.1 HDR Image Categorization 61 5.2.2 Image Attributes and Questionnaire 63 5.2.3 Subjective Assessment Results 65 6 Conclusions and Future Works 74 6.1 Conclusion 74 6.2 Future Works 75 Bibliography 76

    [1] H. Ahn, B. Keum, D. Kim, and H. S. Lee, Adaptive local tone mapping based
    on retinex for high dynamic range images," IEEE International Conference on
    Consumer Electronics (ICCE), pp. 153{156, January 2013.
    [2] T. O. Ayd n, R. Mantiuk, K. Myszkowski, and H.-P. Seidel, Dynamic range
    independent image quality assessment," ACM Transactions on Graphics, vol. 27,
    no. 3, p. 69, 8 2008.
    [3] K. Barnard and B. Funt, Investigations into multi-scale retinex," Colour Imaging
    in Multimedia, pp. 9{17, 3 1998.
    [4] F. J. J. Blommaert and J.-B. Martens, An object-oriented model for brightness
    perception." Spatial Vision, vol. 5, no. 1, pp. 15{41, 1990.
    [5] C. A. Bouman, Digital image processing," 13 2014. [Online]. Available:
    https://engineering.purdue.edu/ bouman/ece637/notes/pdf/Vision.pdf
    [6] G. Buchsbaum and A. Gottschalk, Trichromacy, opponent colours coding and
    optimum colour information transmission in the retina." Proc R Soc Lond B Biol
    Sci., vol. 220, pp. 89{113, 11 1983.
    [7] J. Canny, A computational approach to edge detection," IEEE Transactions on
    Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679 { 698, 11
    1986.
    [8] I. Chen, Visual Psychology. Yeh Yeh Book Gallery, 2011, ch. 6.1, p. 100.
    [9] P. Debevec, A median cut algorithm for light probe sampling," ACM SIG-
    GRAPH, no. 33, 2005.
    [10] F. Durand and J. Dorsey, Fast bilateral ltering for the display of high dynamicrange
    images," ACM Transactions on Graphics, vol. 21, no. 3, pp. 257{266, 2002.
    [11] R. Fattal, D. Lischinski, and M. Werman, Gradient domain high dynamic range
    compression," ACM Transactions on Graphics, vol. 21, no. 3, pp. 249{256, July
    2002.
    [12] A. Gilchrist, C. Kossy dis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar,
    V. Annan, and E. Economou, An anchoring theory of lightness perception."
    Psychological Review, vol. 106, no. 4, pp. 795{834, 10 1999.
    [13] D. C. Hood, T. Ilves, E. Maurer, B. Wandell, and E. Buckingham, Human cone
    saturation as a function of ambient intensity: a test of models of shifts in the
    dynamic range." Vision Research, vol. 18, no. 8, pp. 983{993, 1978.
    [14] P. Hsieh, Correlation analysis," 4 2006. [Online]. Available: http://www.lis.ntu.
    edu.tw
    [15] R. Hunt, The reproduction of colour. Fountain Press Ltd., 1995.
    [16] C. in Colour A Learning Community for Photographers,
    Dynamic range in digital photography." [Online]. Available:
    http://www.cambridgeincolour.com/tutorials/dynamic-range.htmhttp:
    //www.cambridgeincolour.com/tutorials/dynamic-range.htm
    [17] J.Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, Evaluating hdr
    rendering algorithms," ACM Transactions on Applied Perception, vol. 9, no. 4,
    2007.
    [18] D. J. Jobson, Z. ur Rahman, and G. A. Woodell, A multiscale retinex for bridging
    the gap between color images and the human observation of scenes," IEEE
    Transations on Image Processing, vol. 6, no. 7, pp. 965{976, 7 1997.
    [19] G. M. Johnson, Cares and concerns of cie tc8-08: spatial appearance modeling,"
    in HDR imaging. SPIE/IS&T Electronic Imaging Conference, vol. 5668, 2005, pp.
    148{156.
    [20] C. Jung, Y. Fang, and L. Jiao, High-dynamic-range image rendering using hybrid
    tone mapping and automatic k factor decision," Journal of Electronic Imaging,
    vol. 22, no. 3, 1 2013.
    [21] R. M. Karol Myszkowski and G. Krawczyk, High Dynamic Range Video. Morgan
    & Claypool Publishers, 2008.
    [22] J. Kuang, G. M. Johnson, and M. D. Fairchild, icam06: A re ned image appearance
    model for hdr image rendering," Journal of Visual Communication and
    Image Representation, vol. 18, no. 5, pp. 406{414, October 2007.
    [23] M. Kuhna, M. Nuutinen, and P. Oittinen, Method for evaluating tone mapping
    operators for natural high dynamic range images," Proc. SPIE 7876, Digital Pho-
    tography VII, 78760O, vol. 7876, January 2011.
    [24] E. H. Land, The retinex theory of color vision," SCIENTIFIC AMERICAN, vol.
    237, no. 6, pp. 108{128, 11 1997.
    [25] E. H. Land and J. J. McCann, Lightness and retinex theory," Journal of the
    Optical Society of America, vol. 61, no. 1, pp. 1{11, 1971.
    [26] G. W. Larson, H. Rushmeier, and C. Piatko, A visibility matching tone reproduction
    operator for high dynamic range scenes," IEEE TRANSACTIONS ON
    VISUALIZATION AND COMPUTER GRAPHICS, vol. 3, no. 4, pp. 291{306,
    October-December 1997.
    [27] Y.-S. Lin, Partitioned dynamic range histogram and its application to obtain
    better histogram equalization," Master's thesis, National Cheng Kung University,
    2013.
    [28] X. Liu, L. Zhang, H. Li, and J. Lu, Integrating visual saliency information into
    objective quality assessment of tone-mapped images," in 10th International Con-
    ference, ICIC 2014, Taiyuan, China, August 3-6, 2014. Proceedings, ser. 8588.
    Springer International Publishing, 2014, pp. pp 376{386.
    [29] K. Ma, Objective quality assessment and optimization for high dynamic range
    image tone mapping," Master's thesis, University of Waterloo, Ontario, Canada,
    2014.
    [30] L. Meylan, Tone mapping for high dynamic range images," Ph.D. dissertation,
    Ecole Polytechnique Federale de Lausanne (EPFL), 2006.
    [31] L. Meylan and S. Susstrunk, High dynamic range image rendering with a retinexbased
    adaptive lter," IEEE TRANSACTIONS ON IMAGE PROCESSING,
    vol. 15, no. 9, pp. 2820{2830, 9 2006.
    [32] N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman,
    The ciecam02 color appearance model," in IS&T/SID 10 th Color Imaging
    Conference, 2002, pp. 23{27.
    [33] E. Reinhard, Parameter estimation for photographic tone reproduction," Journal
    of Graphics Tools, vol. 7, no. 1, pp. 45{52, 11 2002.
    [34] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G.Ward, and K. Myszkowski,
    High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting,
    2nd ed. Morgan Kaufmann, 8 2012.
    [35] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, Photographic tone reproduction
    for digital images," ACM Transactions on Graphics, vol. 21, no. 3, pp.
    267{276, July 2002.
    [36] D. Stidwill and R. Fletcher, Normal Binocular Vision: Theory, Investigation and
    Practical Aspects. Wiley, 2010.
    [37] C. Tomasi and R. Manduchi, Bilateral ltering for gray and color images," in Pro-
    ceedings of the 1998 IEEE International Conference on Computer Vision, Bombay,
    India, 1998.
    [38] C. Y. Tsai, Chapter 6 edge detection." [Online]. Available: http://140.130.15.147
    [39] J. Tumblin and H. Rushmeier, Tone reproduction for realistic images," IEEE
    Computer Graphics and Applications, vol. 13, no. 6, pp. 42 { 48, 8 2002.
    [40] A. R. V arkonyi-K oczy, A. Rovid, and T. Hashimoto, Gradient-based synthesized
    multiple exposure time color hdr image," IEEE TRANSACTIONS ON INSTRU-
    MENTATION AND MEASUREMENT, vol. 57, no. 8, pp. 1779{1785, 8 2008.
    [41] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment:
    From error visibility to structural similarity," IEEE Transations on Image
    Processing, vol. 13, no. 4, pp. 1{14, 4 2004.
    [42] G. Ward, Real Pixels, J. Arvo., Ed. Graphics Gems II, 1992.
    [43] S. Yan, Objective and subjective assessment of perceptual factorsctors in hdr
    content processing," IRCCYN Image, Video and Communication, Tech. Rep.,
    August 2013.
    [44] H. Yeganeh and Z. Wang, Objective quality assessment of tone-mapped images,"
    IEEE Transations on Image Processing, vol. 22, no. 2, pp. 657{667, 2 2013.
    [45] J. Zhang and S. ichro Kamata, An adaptive tone mapping algorithm for high
    dynamic range images," Computational Color Imaging, vol. 5646, pp. 207{215,
    March 2009.
    [46] L. Zhang, Z. Gu, and H. Li, Sdsp: A novel saliency detection method by combining
    simple priors." in The International Conference on Image Processing, ICIP,
    2013, pp. 171{175.
    [47] M. Cad ka, M. Wimmerb, L. Neumannc, and A. Artusid, Evaluation of hdr tone
    mapping methods using essential perceptual attributes," Computers & Graphics,
    vol. 32, no. 3, pp. 330{349, June 2008.

    下載圖示 校內:2020-02-16公開
    校外:立即公開
    QR CODE