簡易檢索 / 詳目顯示

研究生: 吳桓銘
Wu, Huang-Ming
論文名稱: 高溫處理後含碳之高熵合金鍍層之磨潤及抗腐蝕性質並探討應用於玻璃模具抗沾黏性之研究
Tribological and anti-corrosion properties of high temperature heat treated carbon content high entropy alloys which apply to anti-stick glass mold
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 高熵合金RF磁控濺鍍磨潤抗腐蝕抗沾黏
外文關鍵詞: High entropy alloys, RF magnetron sputter, tribology, corrosion, sticking
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用RF磁控濺鍍披覆CrNbSiTaZr高熵合金於碳化鎢底材上,實驗中以乙炔通量為變因(0、19、20、21、22、23sccm),濺鍍6組鍍層。隨後將底材與6組鍍層進行750度一小時的熱處理,觀察底材熱處理前後與試片熱處理前後共14組試片之微結構、機械性質,並以往復式磨耗變化三種荷重(10N、20N、30N)與兩種對磨材(氮化矽與鉻鋼球),同時也使用迴轉式磨耗荷重10N變化兩種對磨材(氮化矽與鉻鋼球)進行磨潤性質的探討;電化學實驗分析試片之抗腐蝕能力,最後再以沾黏試驗,評估鍍層於實際玻璃成形運用上,能提供模具與玻璃間之抗沾黏能力。
    實驗結果中發現到未通入乙炔之組別有最高的硬度與附著性,但在磨潤方面表現不佳,隨著乙炔通量的上升,鍍層硬度呈現下降的趨勢,同時附著性也呈現下降的趨勢,但能大幅度提升磨潤性質,其中以通入最少乙炔的組別HC19為最佳。熱處理過後所有鍍層的硬度、附著性、磨潤性質均大幅度下降,導因於鍍層內之DLC結構在熱處理過後轉變成偏向石墨之結構。抗沾黏試驗方面,有鍍層之組別能有效改善模具之沾黏,其中以含碳之鍍層為最佳

    The High entropy alloys (HEAs) were deposited on the WC disk by the RF magnetron sputter. Then the disk went under heat treatment at 750℃in order to compare the properties between the heated coatings and unheated coatings. The HEAs without carbon (HC0), has the highest hardness(23.45GPa) and highest critical load(100N), but show the worst tribologica properties. In the acetylene adding HEAs, HC19 has the highest hardness (17.09 GPa), highest critical load(60N), lowest C.O.F (0.05),wear depth(0.29μm) and wear rate(0.16*10-6mm3/N.m).In the anti-corrosion properties, only HC0, HC21,HC22 have lower corrosion current density than the WC. After heat treatment, most of the coatings perform even better than the unheated coatings.In the anti-sticking properties. WC substrate performed the worst in the test, has severe glass sticking on the surface, HC0 can improve the severe sticking on the surface and the coating with acetylene adding perform even better anti–sticking properties than the HC0.

    總目錄 IX 第一章 前言 1 1.1合金介紹 1 1.2高熵合金介紹 2 1.3鍍層原理 3 1.4元素介紹 4 第二章 實驗方法與步驟 8 2-1 研究目的 8 2.2試片製備 8 2.3濺鍍參數與鍍層安排 8 2.4 高溫熱處理 10 2.5基本性質分析與形貌觀察 11 2.5.1成分分析 11 2.5.2結構分析 12 2.5.3硬度試驗 12 2.5.4附著性試驗 13 2.6磨耗試驗 13 2.7電化學試驗 15 2.8 玻璃模具抗沾黏試驗 15 2.9接觸角量測與表面能計算 16 2.10實驗儀器 17 第三章 實驗結果與討論 19 3.1 成分分析 19 3.2 鍍層結構 20 3.3 機械性質與附著性 24 3.4 磨潤性質(往復式磨耗) 27 3.4.1摩擦性質 27 3.4.2磨耗深度 30 3.4.3 磨耗機構 32 3.5 磨潤性質(迴轉式磨耗) 39 3.5.1摩擦性質 39 3.5.2磨耗深度 40 3.5.3磨耗率 45 3.5.4磨耗機構 47 3.6抗腐蝕性質 50 3.7抗沾黏性質 52 3.7接觸角量測與表面能計算 56 第四章 結論 61 4.1結論 61 4.2未來展望與建議 63 參考文獻 65  

    1呂承樺,以鼓膜隔艙壓力應變試驗法探討鋁與鋁鎂合金薄膜在溫度與時間的潛變行為,台灣碩博士論文加值系統,(2014)
    2王元清、袁焕鑫、石永久、高博、戴國欣,不鏽鋼結構的應用與研究現狀,鋼結構,(2010)1-12。
    3. F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials (2006) 175-209.
    4. A. Lindsay Greer, Confusion by design, Nature 366 (1993) 303–304.
    5.J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High‐Entropy Alloys with Multiple Principal Elements, Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater (2004) 299-303.
    6.J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Formation of simple crystal structures in solid-solution alloys with multi-principal metallic elements, Metall. Mater. Trans. A 35 (2004) 2533-2536.
    7.Baker H. Metals handbook 10th ed.Vol.3, Metals Park, OH:ASM International, (1992).
    8. Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater (2004) 299–303.
    9.R. A. Swalin, Thermodynamics of Solids, 2nd ed. Wiley, New York (1991) 21.
    10.A. Bendavid, P.J. Martin, T.J. Kinder, E.W. Preston, The deposition of NbN and NbC thin films by filtered vacuum cathodic arc deposition, Surf. Coat. Technol.163 (2003) 347-352.
    11.Z.H. Han, X.P. Hu, J.W. Tian, G.Y. Li,M.Y, Gu,Magnetron sputtered NbN thin films andmechanical properties, Surf. Coat. Technol. 179 (2004) 188–192.
    12.http://www.ndl.narl.org.tw/docs/publication/22_4/pdf/E5.pdf.
    13.K. Zhang, K. Balasubramanian, B.D. Ozsdolay, C.P. Mulligan, S.V. Khare, W.T. Zheng, D. Gall, Growth and mechanical properties of epitaxial NbN(001) films on MgO(001), Surface & Coatings Technology 288 (2016) 105–114.
    14.M. Benkahoul, E. Martinez, A. Karimi, R. Sanjinés, F. Lévy, Structural and mechanicalproperties of sputtered cubic and hexagonal NbNx thin films, Surf. Coat. Technol.180-181 (2004) 178–183.
    15.M. Wen, C.Q. Hu, Q.N. Meng, Z.D. Zhao, T. An, Y.D. Su, W.X. Yu, W.T. Zheng, Effects of nitrogen flow rate on the preferred orientation and phase transition for niobium nitridefilms grown by direct current reactive magnetron sputtering, J. Phys. D. Appl.Phys. 42 (2009) 035304.
    16.Xuefeng Liao、Jinhui Peng、Libo Zhang, Enhanced carbothermic reduction og ilmenite placer by additional ferrosilicon, Journal of Alloys and Compounds 708 (2017) 1110-1116.
    17.Shuoshuo Qu、Yadong Gong、Yuying Yang, Surface topography and roughness of silicon carbide ceramic matrix composites, Ceramics International 44 (2018) 14742-14753.
    18.Renjie Ji、Yonghong Liu、Yanzhen Zhang, Machining performance of silicon carbide ceramic in end electric discharge milling, International Journal of Refractory Metals and Hard Materials 29 (2011) 117-122.
    19.J.L. Zhou、G.Q. Wu、W.N. Zhu, Tensile stress fatigue life model of silicon nitride ceramic balls, Tribology International 42 (2009) 1838-1845.
    20.Wei Liu、Quanquan Chu、Rongxuan He,Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools, Ceramics International 44 (2018) 2209-2215.
    21.王暉、張小明、李來平,鉭及鉭合金在工業裝備中應用,《裝置製造技術》第八期,(2013)115-117。
    22.L. Wang, M. Zhang, J.P. Chu and T.G. Nieha, Structures and nanoindentation properties of nanocrystalline and amorphous Ta–W thin films, Scripta Material 58 (2008) 195-198.
    23. Mingji Li, Wenlong Guo, Hongji Li, Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor application, Applied Surface Science 317 (2014) 1100-1106.
    24.Jing CuI, Liang Zhao, Weiwei Zhu, Antibacterial activity, corrosion resistance and wear behavior of spark plasma sintered Ta-5Cu alloy for biomedical applications, Journal of the Mechanical Behavior of Biomedical Material 74, (2017) 315-323.
    25.E. Khaleghi, Y.S. Lin, M.A. Meyers, E.A. Olevsky, Spark plasma sintering of tantalum carbide, Scr. Mater. 63 (2010) 577–580.
    26.M. Ali, M. Urgen, M.A. Atta, Tantalum carbide films synthesized by hotfilament chemical vapor deposition technique, Surf. Coat. Technol. 206 (2012) 2833–2838.
    27.Ding Ding, Youtao Xie, Kai Li, Black plasma-sprayed Ta2O5 coatings with photothermal effect for bone tumor therapy, Cermics International 44 (2018) 12002-12006
    28.Juxia Li, Weili Da, Guangjun Wu, Fabrication of Ta2O5 films on tantalum substrate for efficient photocatalysis, Catalysis Communications 65 (2015) 24-29.
    29.N. Nedfors, O. Tengstrand, E. Lewin, A. Furlan, P. Eklund, L. Hultman, U. Jansson, Superhard NbB2 −x thin films deposited by dc magnetron sputtering, Surf. Coat.Technol. 206 (2011) 295-300.
    30.F.A.P. Fernandes, J. Gallego, C.A. Picon, G. Tremiliosi Filho, L.C. Casteletti, Wear and corrosion of niobium carbide coated AISI 52100 bearing steel, Surface & Coatings Technology 279 (2015) 112–117.
    31.H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps, William Andrew, Westwood, New Jersey, USA, (1996).
    32.D. Vallauri, I.C. Atías Adrián, A. Chrysanthou, TiC–TiB2 composites: a review of phase relationships, processing and properties, J. Eur. Ceram. Soc. 28 (2008) 1697–1713.
    33.K. Ravi Kumar, K. Kiran, V.S. Sreebalaji, Micro structural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide, Journal of Alloys and Compounds 723 (2017) 795-801.
    34.R. Koc, C. Meng, G.A. Swift, Sintering properties of submicron TiC powders from carbon coated titania precursor, J. Mater. Sci. 35 (2000) 3131–3141.
    35.C. Park, S. Nam, S. Kang, Enhanced toughness of titanium carbonitride-based cermets by addition of (TiW)C carbides, Mater. Sci. Eng.: A 649 (2016) 400–406.
    36.Z. Fu, R. Koc, Sintering and mechanical properties of TiB2-TiC-Ni using submicron borides and carbides, Mater. Sci. Eng.: A 676 (2016) 278–288.
    37.Z. Fu, K. Mondal, R. Koc, Sintering, mechanical, electrical and oxidation properties of ceramic intermetallic TiC–Ti3Al composites obtained from nano-TiC particles, Ceram. Int. 42 (2016) 9995–10005.
    38.L.C. Chen, D.M. Bhusari, C.Y. Yang, et al. Si-containing crystalline carbon nitride derived from microwave plasma-enhanced chemical vapor deposition, Thin Solid Films, 303 (1997) 66-75.
    39.J. Takadoum, J.Y. Rauch, J.M. Cattenot, N. Martin, Comparative study of mechanical and tribological properties of CN and x DLC films deposited by PECVD technique, Surf. Coat. Technol, 174-175 (2003) 427-433.
    40.Y.S. Park, J.H. Boo, B. Houg, The effects of annealing temperature on characteristics of UBMS sputtered CNx films for protective coatings, Mater. Res. Bull 47 (2012) 2776-2779.
    41.V. AjayKumar, P. Rama Murty Raju, N. Ramanaiah, RajeshSiriyala, Effect of ZrO2 content on the mechanical properties and microstructure of HAp/ZrO2 nanocomposites, Journal of Ceramics International 44 (2018) 10345-10351.
    42.Bao-an WANG, Ning WANG, Yu-jing YANG, Hua ZHONG, Ming-zhen MA, Xin-yu ZHANG, Ri-pingLIU. Fabrication, microstructures and mechanical properties of ZrO2 dispersion-strengthened Q345 steel, Journal of Transactions of Nonferrous Metals Society of China 28 (2018) 1132-1140.
    43.ChaopengCui, XiangweiZhu, ShulongLiu, QiangLi, MinZhang, GuangpingZhu, ShizhongWei. Effect of nano-sized ZrO2 on high temperature performance of Mo-ZrO2 alloy. Journal of Alloys and Compounds 768 (2018) 81-87.
    44.IkwhangChang, JinhwanLee, YeageunLee, Yoon HoLee, Seung HwanKo, Suk WonCha, Thermally stable Ag@ZrO2 core-shell via atomic layer deposition, Journal of Materials Letters 188 (2017) 372-374.
    45.李京桓、黃肇瑞,生活化的結構陶瓷,科學發展481,(2013) 60-65.
    46.何主亮、張景棠,不可忽視的陶瓷鍍膜,科學發展375,(2004) 16-23.
    47.D. Wu, Z. Zhang, W. Fu, X. Fan, H. Guo, Structure, electrical and chemical properties of zirconium nitride films deposited by dc reactive magnetron sputtering, ppl. Phys. A 64 (1997) 593–595.
    48.M. Guerain, F. Rakotovao, S. Y. Brou, Stress release in α-Cr2O3 oxide thin films formed on Ni30-Cr and Fe47-Cr alloys, Journal of Alloys and Compounds 718 (2017) 223-230.
    49.Aleksandr Bagmut, Morphology and kinetics of crystals growth in amorphous films of Cr2O3, deposited by laser ablation, Journal of Crystal Growth 492 (2018) 92-97.
    50.K. V. Sreenivasa Rao, C. S. Ramesh, K.G Girisha, Slurry Erosive Wear Behavior of Plasma Sprayed Cr2O3Coatings on Steel Substrates, Materialtoday: Proceedings 4 (2017) 10283-10287.
    51.T. S. Sachit, R. V. Nandish, Mallikarjun, Thermal analysis of Cr2O3 coated diesel engine piston using FEA, Materialtoday: Proceedings 5 (2018) 5074-5081.
    52.Xianghui Wang, Pengda Zhao, Jianwei Chen, Corrosion resistance of Al–Cr-slag containing chromium–corundum refractories to slags with different basicity, Ceramics International 44 (2018) 2162-12168.
    53.Ming-Hsiao Hsieh, Ming-Hung Tsai, Wan-Jui Shen, Jien-Wei Yeh, Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings, Journal of Surface&Coating Technology 221 (2013) 118-123.
    54.W.J Shen, H Tsai, K.Y Tsia, Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride, Journal of The Electrochemical Society (2013) 531-535.
    55. A. Grill, Review of the tribology of diamond-like carbon, Wear (1993) 143-153.
    56. Singh, A., et al., Glial cell and fibroblast cytotoxicity study on plasma-deposited diamond-like carbon coatings, Biomaterials 24 (2003) 5083-5089.
    57. 孫承正,以封閉式非平衡磁控濺鍍法製備抗沾黏薄膜之表面自由能性質研究,國立成功大學材料工程學系,碩士論文,(2007)。
    58. HuangX, LingZ, DaiL.H, Influence of surface energy and thermal effects on cavitation instabilities in metallic glasses, Mechanics of Materials 131 (2019) 113-120.
    59. Jien-Min Wu, Su-JienLin, Jien-WeiYeh, Swe-KaiChen, Yuan-ShengHuang, Hung-ChengChen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear 261 (2006) 513-519.

    無法下載圖示 校內:2024-06-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE