簡易檢索 / 詳目顯示

研究生: 吳振胤
Wu, Chen-Yin
論文名稱: 新型觀測器/卡爾曼濾波器/控制器鑑別法與其應用於輸入限制控制及容錯控制
New Observer/Kalman Filter/Controller Identification Methods and Their Applications to Input-Constrained Control and Fault-Tolerant Control
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 195
中文關鍵詞: 最小實現即時容錯控制輸入限制數位重新設計觀測器/卡爾曼濾波器鑑別法觀測器/控制器鑑別法
外文關鍵詞: Minimal realization, Fault-tolerant control, Input constraint, Digital redesign, Observer/Kalman filter identification, Observer/controller identification
相關次數: 點閱:112下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 考慮未知隨機系統,本論文藉由可觀測標準式,提出創新型最小實現之線上觀測器/卡爾曼濾波器鑑別法與改良型離線觀測器/控制器鑑別法,同時結合最佳化線性二次追蹤器設計以獲得良好狀態估測與追蹤性能,並分別應用於即時主動輸入限制容錯控制與被動容錯控制。首先,針對具有直接傳輸項的未知系統,基於當前之系統輸出量測值,提出一個新的輸入限制離散線性二次追蹤器。本子題主要貢獻包含定義新型輸入限制成本函數與相對應之黎卡提方程解、提出一種有系統的調整機制,以調整成本函數的權重值以及透過所提出的實現法來克服系統輸出與控制輸入之互為因果問題。其次,考慮具有直接傳輸項的未知系統,提出另一種基於數位再設計之當前觀測型輸入限制軌跡追蹤器。它的創新性包括分別針對連續和離散系統提出新的線性二次類比與數位追蹤器與提出另一種有系統的搜尋機制,以搜尋成本函數的權重值。再者,針對未知隨機系統的即時控制,一個新穎的線上最小實現觀測器/卡爾曼濾波器鑑別法在本論文中被提出,並應用於輸入限制之主動容錯控制設計。最後,一個新型離線最小實現典型式之觀測器/控制器鑑別法被提出,以補償既存未知控制器因故障所造成的追蹤性能不佳的缺點;補償運作不夠理想之既存控制器。在本論文中,以多個範例來說明所提出方法之有效性。

    Via the observer-canonical form (O-CF), this dissertation proposes a novel minimal realization on-line observer/Kalman filter identification (OKID) method and an improved off-line observer/controller identification (OCID) method for unknown stochastic systems integrated with optimal linear quadratic tracker design to obtain good state estimation and tracking performances for real-time active input-constrained fault- tolerant control (FTC) and passive FTC, respectively. First, a new current-observer-based input-constrained discrete linear quadratic tracker (DLQT) for an unknown system with a direct transmission term is proposed. The main contributions of this sub-topic include (i) to formula a new input-constrained cost function and its corresponding Riccati equation, (ii) to propose a systematic mechanism for tuning the weighting matrix in the cost function, and (iii) to overcome the input-output causal problem by the proposed realization. Second, an alternative current-observer-based input-constrained tracker for an unknown system with a direct transmission term based on the digital redesign approach is proposed. Its novelties include (i) to propose a new linear quadratic analog tracker (LQAT) and a new linear quadratic digital tracker (LQDT) for the continuous-time and sampled-data systems, respectively, with a direct transmission term under input constraint and (ii) to propose an alternative tuning mechanism to select the weighting matrix in the cost function. Third, a novel on-line minimal realization OKID method is presented for real-time control of unknown stochastic systems, and it is applied for the design of a novel input-constrained active fault-tolerant tracker (FTT). Finally, a new off-line minimal-realization canonical OCID method is proposed, which is able to (i) compensate the degrading tracking performance of an existing unknown controller and/or (ii) compensate the undesirable operating controller. Some illustrative examples are given to demonstrate the effectiveness of the proposed methodologies.

    中文摘要 i Abstract ii Acknowledgement iii Contents iv List of Tables viii List of Figures ix Symbols and Abbreviations xv Chapter 1 Introduction 1 1.1 Literature survey 2 1.1.1 Anti-windup control 2 1.1.2 Digital redesign 2 1.1.3 System identification 3 1.1.4 Fault-tolerant tracker 4 1.2 Dissertation overview 5 Chapter 2 A New Current-Observer-Based Input-Constrained DLQT for an Unknown System with a Direct Transmission Term 8 2.1 Introduction 9 2.2 Problem description 11 2.3 Traditional observer/Kalman filter identification 12 2.3.1 Basic observer equation 13 2.3.2 Computation of Markov parameters 15 2.3.2-1 System Markov parameters 15 2.3.2-2 Observer gain Markov parameters 16 2.3.3 Eigensystem realization algorithm 16 2.3.4 Relationship to a Kalman filter 19 2.4 The input-constrained DLQT for the plant with a direct transmission term 20 2.5 Current-output-based digital observer for the plant with a direct transmission term 27 2.5.1 Digital redesign of the current output-based observer 27 2.5.2 Realizable current output-based digital observer for the plant with a direct transmission term 29 2.6 Design procedure of the current-observer-based input-constrained DLQT for an unknown system with a direct transmission term 31 2.7 An illustrative example 36 2.8 Summary 40 Chapter 3 An Alternative Current-Observer-Based Input-Constrained Tracker for an Unknown System with a Direct Transmission Term: A Digital Redesign Approach 41 3.1 Introduction 42 3.2 Observer-based linear quadratic tracker for the sampled-data system with a direct transmission term under input constraint 45 3.2.1 Optimal linear quadratic analog tracker with input constraint 45 3.2.2 Prediction-based linear quadratic digital tracker for the sampled-data system with a direct transmission term under input constraint 52 3.3 Design procedure of prediction-based digital observer for the system with a direct transmission term under input constraint 54 3.4 Observations and discussions 61 3.4.1 MPC for this system with a direct transmission term 61 3.4.2 Input-constrained MPC for the system with a direct transmission term 64 3.4.3 A high-gain property anti-windup tracker for the system with a direct transmission term 68 3.5 Illustrative examples 73 3.6 Summary 80 Chapter 4 A Novel On-Line OKID and Its Application to Input- Constrained Active FTT Design for Unknown Stochastic Systems 81 4.1 Introduction 82 4.2 A novel on-line OKID method 86 4.2.1 Formulation of the on-line OKID method 87 4.2.2 Computational steps of the on-line OKID method 92 4.2.3 Minimal realization of the OKID method in observer-canonical form 95 4.3 Prediction-based digital-redesign observer for unknown deterministic sampled- data systems without input constraint 99 4.3.1 Digital redesign of the observer-based linear quadratic analog tracker 99 4.3.2 Discrete linear quadratic tracker design 102 4.4 An effective algorithm for the design of the input-constrained observer-based tracker 103 4.5 An active FTT for an unknown stochastic nonlinear time-varying system: An on-line OKID method 107 4.6 Comparison among three kinds of tuning mechanisms of weighting matrices for input constraint 111 4.7 Illustrative examples 121 4.8 Summary 136 Chapter 5 A Novel Minimal-Realization Canonical OCID Method, Compensation Improvement, and Adaptive FTC: An OCID Approach 138 5.1 Introduction 139 5.2 A novel canonical observer/controller identification method 140 5.2.1 System description 141 5.2.2 System and gain Markov parameters 143 5.2.3 Eigensystem realization algorithm 145 5.2.4 The newly proposed minimal realization of the OCID method 147 5.2.4-1 Observer-canonical form 148 5.2.4-2 Controller-canonical form 151 5.3 OCID-based compensation for the unexpectedly faulty controller and/or compensation improvement 154 5.4 Illustrative examples 157 5.5 Summary 169 Chapter 6 Conclusions 170 6.1 Conclusions 170 6.2 Future research topics 172 References 173 Appendix A Optimal Pole-Placement 183 Appendix B Continuous-Time LQG/LTR Design Algorithms 187 Appendix C Anti-Windup Control Scheme for a Scalar Case of SISO System 189 Biography 193 Publication List 194

    [1] Anderson, B. D. O. and Moore, J. B., Optimal Control: Linear Quadratic Methods. Prentice-Hall, New Jersey, 1990.
    [2] Aouaouda, S., Chadli, M., Tarek Khadir, M., and Bouarar, T., “Robust fault tolerant tracking controller design for unknown inputs T-S models with unmeasurable premise variables,” Journal of Process Control, vol. 22, pp. 861-872, 2012.
    [3] Aouaouda, S., Bouarar, T., and Bouhali, O., “Fault tolerant tracking control using unmeasurable premise variables for vehicle dynamics subject to time varying faults,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 351(9), pp. 4514-4537, 2014.
    [4] Aouaouda, S., Chadli, M., Shi, P., and Karimi, H. R., “Discrete-time sensor fault detection observer design for nonlinear systems with parameter uncertainty,” International Journal of Robust and Nonlinear Control, vol. 25(3), pp. 339-361, 2015.
    [5] Bardell, P. H., McAnney, W. H., and Savir, J., Built In Test for VLSI: Pseudorandom Techniques. John Wiley and Sons, New York, 1987.
    [6] Chadli, M., Aouaouda, S., Karimi, H. R., and Shi, P., “Robust fault tolerant tracking controller design for a VTOL aircraft,” Journal of The Franklin Institute- Engineering and Applied Mathematics, vol. 350(9), pp. 2627-2645, 2013.
    [7] Chadli, M., Karimi, H. R., and Shi, P., “On stability and stabilization of singular uncertain Takagi-Sugeno fuzzy systems,” Journal of The Franklin Institute- Engineering and Applied Mathematics, vol. 351, pp. 1453-1463, 2014.
    [8] Chen, C. T., Linear System Theory and Design. Holt, Rienharts and Winston, Inc., New York, 1984.
    [9] Chen, G. and Ueta, T., “Yet another chaotic attractor,” International Journal of Bifurcation Chaos, vol. 9, pp. 1465-1466, 1999.
    [10] Chen, C. H., Tsai, J. S. H., Lin, M. J., Guo, S. M., and Shieh, L. S., “A novel linear quadratic observer and tracker for the linear sampled data regular system with a direct feedthrough term: A digital redesign approach,” IMA Journal of Mathematical Control and Information, vol. 30(1), pp. 129-154, 2013.
    [11] Chien, T. H., Tsai, J. S. H., Guo, S. M., and Li, J. S., “Low-order self-tuner for fault-tolerant control of a class of unknown nonlinear stochastic sampled-data systems,” Applied Mathematical Modelling, vol. 33, pp. 706-723, 2009.
    [12] Darouach, M., Zasadzinski, M., and Xu, S. J., “Full-order observers for linear systems with unknown inputs,” IEEE Transactions on Automatic Control, vol. 39(3), pp. 606-609, 1994.
    [13] Falkenauer, E., Genetic Algorithms and Grouping Problems. John Wiley and Sons, Inc., New York, 1998.
    [14] Fiagbedzi, Y. A. and Pearson, A. E., “Feedback stabilization of linear autonomous time lag system,” IEEE Transactions on Automatic Control, vol. 31, pp. 847-855, 1986.
    [15] Fogel, L. J., Owens, A. J., and Walsh, M. J., Artificial Intelligence through Simulated Evolution. John Wiley, New York, 1966.
    [16] Fujita, M. and Shimemura, E., “Integrity against arbitrary feedback-loop failure in linear multivariable control system,” Automatica, vol. 24(6), pp. 765-772, 1988.
    [17] Gao, Z. and Antsaklis, P. J., “Stability of the pseudo-inverse method for reconfigurable control systems,” International Journal of Control, vol. 53(3), pp. 717-729, 1991.
    [18] Gao, Z. and Antsaklis, P. J., “Reconfigurable control system and design via perfect model following,” International Journal of Control, vol. 56(4), pp. 783-798, 1992.
    [19] Gao, Z. F., Jiang, B., Shi, P., Qian, M. S., and Lin, J. X., “Active fault tolerant control design for reusable launch vehicle using adaptive sliding mode technique,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 349(4), pp. 1543-1560, 2012.
    [20] Goodwin, G. C. and Sin, K. S., Adaptive Filtering Prediction and Control. Prentice Hall, New Jersey, 1984.
    [21] Graham, C. G., Stefan, F. G., and Mario, E. S., Control System Design. Prentice Hall, New Jersey, 2001.
    [22] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
    [23] Guo, S. M. and Peng, Z. H., “An observer-based decentralized tracker for sampled- data systems: An evolutionary programming approach,” International Journal of General Systems, vol. 34, pp. 421-449, 2005.
    [24] Ho, B. L. and Kalman, R. E., “Effective construction of linear state-variable models from input-output data,” Proceeding of the 3rd Annual Allerton Conference on Circuits and System Theory, Monticello, IL: University of Illinois, pp. 449-459, 1965.
    [25] Hu, T., Teel, A. R., and Zaccarian, L., “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol. 44(2), pp. 512-519, 2008.
    [26] Hu, N. T., Tsai, J. S. H., Guo, S. M., Shieh, L. S., and Chen, Y., “Low-order multi-rate linear time-invariant decentralized trackers using the new observer-based sub-optimal method for unknown sampled-data nonlinear time-delay system with closed-loop decoupling,” Optimal Control Applications and Methods, vol. 132(4), pp. 433-475, 2010.
    [27] Huang, C. M., Tsai, J. S. H., Provence, R. S., and Shieh, L. S., “The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays,” Optimal Control Applications and Methods, vol. 24(4), pp. 197-236, 2003.
    [28] Jiang, J., “Design of reconfigurable control-systems using eigenstructure assignments,” International Journal of Control, vol. 59(2), pp. 395-410, 1994.
    [35] Johansen, T. A., Petersen, I., and Slupphaug, O., “Explicit sub-optimal linear quadratic regulation with state and input constraints,” Automatica, vol. 38(7), pp. 1099-1111, 2002.
    [30] Juang, J. N., Applied System Identification. Prentice Hall, New Jersey, 1994.
    [31] Kailath, T., Linear systems. Prentice Hall, New Jersey, 1980.
    [32] Kanso, W., “Self-tuning adaptive control of engine speed in the presence of random disturbances,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 331(3), pp. 313-325, 1994.
    [33] Khosrowjerdi, M. J., Nikoukhah, R., and Safari-Shad, N., “A mixed approach to simultaneous fault detection and control,” Automatica, vol. 40(2), pp. 261-267, 2004.
    [34] Kuo, B. C., Digital Control Systems. Holt, Rinehart and Winston, New York, 1980.
    [35] Lee, Y. Y., Tsai, J. S. H., Shieh, L. S., and Chen, G., “Equivalent linear observer-based tracker for stochastic chaotic system with delays and disturbances,” IMA Journal of Mathematical Control and Information, vol. 22, pp. 266-284, 2005.
    [36] Lewis, F. L., Applied Optimal Control and Estimation. Prentice-Hall, New Jersey, 1992.
    [37] Lewis, F. L. and Syrmos, V. L., Optimal Control. John Wiley and Sons, New Jersey, 1995.
    [38] Lin, P. H., A Modified NARMAX Model-Based Self-Tuner with Fault Tolerance for Unknown Nonlinear Stochastic Hybrid Systems with an Input-Output Direct Feed-Through Term and Input Constraint. Master Thesis, National Cheng Kung University, 2013.
    [39] Ljung, L. and Soderstrom, T., Theory and Practice of Recursive Identification. MIT press, Cambridge, Mass, 1983.
    [40] Ljung, L., System Identification Theory for the User 2nd. Prentice-Hall, New Jersey, 1999.
    [41] Lungu, M. and Lungu, R., “Reduced order observer for linear time-invariant multivariable systems with unknown inputs,” Circuits, Systems, and Signal Processing, vol. 32(6), pp. 2883-2898, 2013.
    [50] Mare, J. B. and De Dona, J. A., “Solution of the input-constrained LQR problem using dynamic programming,” Systems and Control Letters, vol. 56(5), pp. 342-348, 2007.
    [43] Mokhtarpour, L. amd Hassanpour, H., “A self-tuning hybrid active noise control system,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 349(5), pp. 1904-1914, 2012.
    [44] Ogata, K., Discrete-time Control Systems. Prentice-Hall, Englewood Cliffs, N.J., 1987.
    [45] Rodrigues, M., Hamdi, H., Braiek, N. B., and Theilliol, D., “Observer-based fault tolerant control design for a class of LPV descriptor systems,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 351(6), pp. 3104-3125, 2014.
    [46] Sheen, I. E., Tsai, J. S. H., and Shieh, L. S., “Optimal digital redesign of continuous-time systems using fractional-order hold,” Optimal Control Applications and Methods, vol. 18(6), pp. 399-422, 1997.
    [47] Sheen, I. E., Tsai, J. S. H., and Shieh, L. S., “Optimal digital redesign of continuous-time system using nonideal sampler and zero-order hold,” Journal of Control Systems and Technology, vol. 5(4), pp. 243-252, 1997.
    [48] Sheen, I. E., Tsai, J. S. H., and Shieh, L. S., “Optimal digital redesign of continuous-time systems with input time delay and/or asynchronous sampling,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 335(4), pp. 605-616, 1998.
    [49] Shi, Y. and Fang, H., “Kalman filter-based identification for systems with randomly missing measurements in a network environment,” International Journal of Control, vol. 83(3), pp. 538-551, 2010.
    [50] Shieh, L. S., Dib, H. M., and Sekar, G., “Continuous-time quadratic regulators and pseudo-continuous-time quadratic regulators with pole placement in a specific region,” IEE Proceedings D-Control Theory and Applications, vol. 134(5), pp. 338- 346, 1987.
    [51] Shieh, L. S., Zho, X. M., and Zhang, J. L., “Locally optimal-digital redesign of continuous-time systems,” IEEE Transactions on Industrial Electronics, vol. 36(4), pp. 511-515, 1989.
    [52] Shieh, L. S., Decrocq, B. B., and Zhang, J. L., “Optimal digital redesign of cascaded analogue controllers,” Optimal Control Applications and Methods, vol. 12(4), pp. 205-219, 1991.
    [53] Shieh, L. S., Chen, G., and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of Systems Science, vol. 23(6), pp. 839-854, 1992.
    [54] Sinha, N. K. and Rao, G. P., Identification of Continuous-time Systems: Methodology and Computer Implementation. Kluwer Academic Publishers Norwell, MA, USA, 1991.
    [55] Soderstorm, T. and Stoica, P., System Identification. Prentice Hall, New Jersey, 1989.
    [56] Solmaz, S. K. and Faryar, J., “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54(8), pp. 1934-1939, 2009.
    [57] Stoorvogel, A. A., The Control Problem: A State Space Approach. Prentice Hall, Englewood Cliffs, New Jersey, 1992.
    [58] Tarbouriech, S. and Turner, M., “Anti-windup design: An overview of some recent advances and open problems,” IET Control Theory and Applications, vol. 3(1), pp. 1-19, 2009.
    [59] Teixeira, M. C. M. and Zak, S. H., “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7(2), pp. 133-142, 1999.
    [60] Tiwari, P. Y., Mulder, E. F., and Kothare, M. V., “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52(12), pp. 2341-2345, 2007.
    [61] Tsai, J. S. H., Shieh, L. S., Zhang, J. L., and Coleman, N. P., “Digital redesign of pseudo-continuous-time suboptimal regulators for large-scale discrete systems,” Control Theory and Advanced Technology, vol. 5(1), pp. 37-65, 1989.
    [62] Tsai, J. S. H., Wang, C. T., and Shieh, L. S., “Model conversion and digital redesign of singular systems,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 330(6), pp. 1063-1086, 1993.
    [63] Tsai, J. S. H., Lee, Y. Y., Cofie, P., Shieh, L. S., and Chen, X. M., “Active fault tolerant control using state-space self-tuning control approach,” International Journal of Systems Science, vol. 37(11), pp. 785-797, 2006.
    [64] Tsai, J. S. H., Chien, T. H., Guo, S. M., Chang, Y. P., and Shieh, L. S., “State-space self-tuning control for stochastic chaotic fractional-order chaotic systems,” IEEE Transactions on Circuits and Systems Part I: Regular Papers, vol. 54(3), pp. 632- 642, 2007.
    [65] Tsai, J. S. H., Lin, J. Y., Shieh, L. S., Chandra, J., and Guo, S. M., “Self-tuning fault-tolerant digital PID controller for MIMO analog systems with partial actuator and system component failures,” IMA Journal of Mathematical Control and Information, vol. 25(2), pp. 221-238, 2008.
    [66] Tsai, J. S. H., Wang, C. T., Kung, C. C., Guo, S. M., Shieh, L. S., and Chen, C. M., “A NARMAX model-based state-space self-tuning control for nonlinear stochastic hybrid systems,” Applied Mathematical Modelling, vol. 34, pp. 3030-3054, 2010.
    [67] Tsai, J. S. H., Du, Y. Y., Zhuang, W. Z., Guo, S. M., Chen, C. W., and Shieh, L. S., “Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints,” IET Control Theory and Applications, vol. 5(3), pp. 447-464, 2011.
    [68] Tsai, J. S. H., Huang, C. C., Guo, S. M., and Shieh, L. S., “Continuous to discrete model conversion for the system with a singular system matrix based on matrix sign function,” Applied Mathematical Modelling, vol. 35(8), pp. 3893-3904, 2011.
    [69] Tsai, J. S. H., Chen, F. M., T. Y. Yu, S. M. Guo, L. S. Shieh, Efficient decentralized iterative learning trackers for the unknown sampled-data interconnected large-scale state-delay system with closed-loop decoupling property, ISA Transactions, vol. 41, pp. 81-94, 2012.
    [70] Tsai, J. S. H., Chen, C. H., Lin, M. J., Guo, S. M., and Shieh, L. S., “Novel quadratic tracker and observer for the equivalent model of the sampled-data linear singular system,” Applied Mathematical Sciences, vol. 6(68), pp. 3381-3409, 2012.
    [71] Tsai, J. S. H., Hsu, W. T., Lin, L. G., Guo, S. M., and Tan, J. W., “A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term,” ISA Transactions, vol. 53, pp. 56-75, 2014.
    [72] Veillette, R. J., Medanic, J. B., and Perkins, W. R., “Design of reliable control systems,” IEEE Transactions on Automatic Control, vol. 37(3), pp. 290-304, 1992.
    [73] Wang, H. and Wang, Y., “Neural-network-based fault-tolerant control of unknown nonlinear systems,” IEE Proceedings-Control Theory and Applications, vol. 146(5), pp. 389-398, 1999.
    [74] Wang, L. P., Model Predictive Control System Design and Implementation using MATLAB. Springer, London, 2009.
    [75] Wang, C. T., Tsai, J. S. H., Chen, C. W., Lin, Y., Guo, S. M., and Shieh, L. S., “An active fault-tolerant PWM tracker for unknown nonlinear stochastic hybrid systems: NARMAX model and OKID based state-space self-tuning control,” Journal of Control Science and Engineering, vol. 2010, pp. 1-27, 2010.
    [76] Wang, J. H., Tsai, J. S. H., Huang, J. S., Guo, S. M., and Shieh, L. S., “A low-order active fault-tolerant state space self-tuner for the unknown sampled-data nonlinear singular system using OKID and modified ARMAX model-based system identification,” Applied Mathematical Modelling, vol. 37(3), pp. 1242-1274, 2013.
    [77] Wei, C. L., Tsai, J. S. H., Guo, S. M., and Shieh, L. S., “Universal predictive Kalman filter-based fault estimator and tracker for sampled-data nonlinear time-varying systems,” IET Control Theory and Applications, vol. 5(1), pp. 203-220, 2011.
    [78] Wu, F. and Lu, B., “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems and Control Letters, vol. 52(4), pp. 305-322, 2004.
    [79] Wu, C. Y., Tsai, J. S. H., Chen, L. C., Guo, S. M., Shieh, L. S., and Tsai, T. J., “A new input constrained quadratic tracker for an unknown sampled-data system with an input to output direct transmission term,” Proceeding of the 3rd Annual International Conference on Industrial, Systems and Design Engineering, 2015.
    [80] Wu, C. Y., Tsai, J. S. H., Guo, S. M., Shieh, L. S., Canelon, J. I., Ebrahimzadeh, F., and Wang, L., “A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 352(3), pp. 1119-1151, 2015.
    [81] Xu, Y. Y., Tong, S. C., and Li, Y. M., “Adaptive fuzzy fault-tolerant output feedback control of uncertain nonlinear systems with actuator faults based on dynamic surface technique,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 350(7), pp. 1768-1786, 2013.
    [82] Xu, Y. Y., Tong, S. C., and Li, Y. M., “Adaptive fuzzy fault-tolerant decentralized control for uncertain nonlinear large-scale systems based on dynamic surface control technique,” Journal of The Franklin Institute-Engineering and Applied Mathematics, vol. 351(1), pp. 456-472, 2014.
    [83] Yang, Y., Yang, G. H., and Soh, Y. C., “Reliable control of discrete-time systems with actuator failure,” IEE Proceedings-Control Theory and Applications, vol. 147(4), pp. 428-432, 2000.
    [84] Yen, G. G. and Ho, L. W., “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50(2), pp. 296-312, 2003.
    [85] Zaccarian, L. and Teel, A.R., “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49(11), pp. 2055-2061, 2004.
    [86] Zhang, Y. and Jiang, J., “Integrated active fault-tolerant control using IMM approach,” IEEE Transactions on Aerospace Electronic System, vol. 37(4), pp. 1221-1235, 2001.
    [87] Zhang, X. D., Parisini, T., and Polycarpou, M. M., “Adaptive fault-tolerant control of nonlinear uncertain systems: An information-based diagnostic approach,” IEEE Transactions on Automatic Control, vol. 49(8), pp. 1259-1274, 2004.

    無法下載圖示 校內:2019-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE