| 研究生: |
陳聖文 Chen, Sheng-Wen |
|---|---|
| 論文名稱: |
低介電常數摻碳氧化矽材料之合成及分析 Synthesis and Characteristics of Carbon-doped Silicon Oxide Low-k Dielectric Constant Materials |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 共同指導教授: |
王英郎
Wang, Ying-Lang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 低介電常數 、紫外光熱處理 、成孔劑 |
| 外文關鍵詞: | Low-k, UV curing, Porogen |
| 相關次數: | 點閱:144 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的為探討奈米積體電路製程中之摻碳氧化矽 (SiOC:H)低介電常數薄膜及利用紫外線處理及熱處理對其薄膜性質的影響。以及探討電化學機械拋光處理在積體電路製程上的應用及其性質的研究,第一部分,利用電漿輔助化學氣相沈積法,將結構形成物(matrix)的前驅物二乙氧基甲基矽烷(DEMS)與碳氫化合物構成的成孔劑(porogen)物質C10H16(a-Terpinene)共沉積為含有成孔劑(porogen)的摻碳氧化矽(SiOC:H)薄膜,主要研究低介電薄膜經不同紫外光處理時間處理後,觀察其薄膜特性的變化。實驗結果顯示,擁有摻雜porogen的薄膜會因為紫外光處理後將porogen移除產生孔洞,造成較低的介電常數且擁有較佳的機械特性和電特性。
第二部分,探究銅電化學機械研磨(ECMP)形成機制在奈米半導體積體電路製程之研究。在此研究中,利用高解析穿透式電子顯微鏡(HRTEM)與X射線光電子能譜分析儀(XPS)探討薄膜頓化層微結構及表面成長機制,並利用電化學阻抗儀(EIS)與Potentiodynamic 極化曲線進行電化學之電性研究。另一方面探討經電化學機械研磨的銅平坦化效能(PE)之變化,及其在奈米半導體積體電路製程之研究。
The objective of this study is to investigate a suitable low dielectric material (low-k)and copper (Cu)electrochemical mechanical planarization (ECMP) mechanism for the application of the nanometer integrated circuits.
The main focus of this dissertation can be divided into two parts. First, the film is deposited from the decomposition of two precursors in the plasma. Both matrix (DEMS) and precursors (C10H16) are transformed into species that eventually lead to the formation of a hybrid film composed of an organ silicate-based matrix enclosing organic inclusions.
Then, during the UV curing and thermal treatment, the organic phase, mostly consisting of the porogen molecule fragment, is removed. As the result, the film become porous and has ultra low-k properties and has better mechanical and electric properties by UV curing than thermal annealing.
Second, we have investigated the microstructures and growth mechanism of passive film on the Cu surface by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the samples were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curve. In addition, we have evaluated the planarization efficiency (PE) after ECMP processing in the in the semiconductor integrated circuits.
1. International Technology Roadmap for Semiconductors 2005, (Semiconductor Industry Association).
2. R. H. Havemann, “Overview of Process Integration Issue for Low k Dielectrics”, Mat. Res. Soc. Symp. Proc. 511, 3 (1998).
3. M. T. Bohr, “ Interconnect Scaling- The Real Limiter to High Performance ULSI”, IEDM 95, 241 (1995).
4. International Technology Roadmap for Semiconductors 1997, (Semiconductor Industry Association).
5. J. R. Lloyd, “Electromigration in Integrated Circuit Conductors”, J. Phys. 32, R109 (1999).
6. C. Bruynseraede, D. Chiaradia, H. Wang, K. Maex, “EM-induced mass transport at the Cu/barrier interface: a new test structure for rapid assessment at user conditions”, IEEE IITC Proc., 21 (2003).
7. E. Ogawa, K. D. Lee, V. A. Blaschke, and P. S. Ho, “Electromigration Reliability Issues in Dual- Damascene Cu Interconnects”, IEEE Transactions on Reliability 51, 403 (2001).
8. S. P. Murarka, “Multilevel Interconnections for VLSI and GSI Era”, Mater. Sci. and Eng. 19, 87 (1997).
9. K. Holloway,“Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions”, J. J. App. Phys. 71, 5433, (1992).
10. International Technology Roadmap for Semiconductors 1999, (Semiconductor Industry Association).
11. International Technology Roadmap for Semiconductors 2001, (Semiconductor Industry Association).
12. International Technology Roadmap for Semiconductors 2003, (Semiconductor Industry Association).
13. L. Peters, “Low-k Dielectrics”, Semiconductor International, June, 108(2000).
14. Hong Xiao 著, 羅正中, 張鼎張譯, “半導體製造技術導論”, 學銘圖書, 台灣 (2004).
15. N. Sherwani, Algorithms for VLSI physical Design Automation, Kluwer Academic Publishers, 3 rd. Ed. (1999).
16. P. A. Kohl, ”Low Dielectric Constant Insulators for Future Integrated Circuits and Packages”, Annu. Rv. Chem. Biomol. Eng. 2, 379 (2011)
17. S. R. Wilson, C. J. Tracy, and J. L. Freman, Jr., Handbook of Multilevel Metallization for Integrated Circuits, Noyes Publication, Park Ridge, New Jersey, USA, Ch. 1 (1993).
18. D. Shamiryan1, T. Abell, F. Iacopi1, and K. Maxe, “Low-k dielectric Materials”, MaterialsToday, January, 34 (2004).
19. S. M. Han and E. S. Aydila, “Reasons for lower dielectric constant of fluorinated SiO2 films”, J. Appl. Phys. 83, 2172 (1998).
20. W. S. Yoo, R. Swope, B. Sparks, and D. Mordo, “Comparison of C2F6 and FASi-4 as fluorine dopant sources in plasma enhanced chemical vapor deposited fluorinated silica glass films”, J. Mater. Res. 12, 70 (1997).
21. S. P. Kim, S. K. Choi, Y. Park and I. Chung, “Effect of water absorption on the residual stress in fluorinated silicon-oxide thin films fabricated by electron-cyclotron-resonance plasma-enhanced chemical-vapor deposition”, Appl. Phys. Lett. 79, 185 (2001).
22. M. Yoshimaru, S. Koizumi, and K. Shimokawa, “Interaction between water and fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 15, 2915 (1997).
23. X. D. Pi, C. P. Burrows, and P. G. Coleman, “Fluorine in Silicon: Diffusion, Trapping, and Precipitation”, Phys. Rev. Lett. 90, 155901 (2003).
24. T. Hara, K. Sakamoto, F. Togoh, H. Yang, and D. R. Evans, “Thermal Stability and Interfacial Reaction of Barrier Layers with Low-Dielectric-Constant Fluorinated
Carbon Interlayer”, Jpn. J. Appl. Phys. 39, L506 (2000).
25. A. Jain, S. Rogojevic, S. Ponoth, N. Agarwal, I. Matthew, W. N. Gill, P. Persans, M. Tomozawa, J. L. Plawsky, and E. Simonyi, "Porous silica materials as Low-k
Dielectrics for Electronic and Optical Interconnects", Thin Solid Films 513, 398 (2001).
26. S. Yu, T. K. S. Wong, K. Pita, and X. Hu, “Synthesis of organically modified mesoporous silica as a low dielectric constant intermetal dielectric”, J. Vac. Sci. Technol. B 20, 2036 (2002).
27. J. Iacoponi, “Status and Future prospects for low k interconnect metrology”, International Sematech., March (2003).
28. M. L. O’Neill, A. Lukas, R. Vrtis, J. Vincent, B. Peterson, M. Bitner and E. Karwacki, “Low-k Materials by Design”, Semiconductor International, June (2002).
29. Z. Cui, J. M. Madsen, and C. G. Takoudis, “Rapid thermal oxidation of silicon in ozone”, J. Appl. Phys. 87, 8181 (2000).
30. A. Kazor and I. W. Boyd, “Ozone-induced rapid low temperature oxidation of silicon”, Appl. Phys. Lett. 63, 2517 (1993).
31. G. W. Ray, “Low Dielectric Constant Materials Integration Challenges”, Mat. Res. Soc. Symp. Proc. 511, 199 (1998).
32. M. P. Andrews, P. Zhang, S. I. Najafi, K. K. Chao, and N. F. Pasch, “Spinnable and UV-patternable hybrid sol-gel silica glass for direct semiconductor dielectric layer manufacturing”, Proc. SPIE Int. Soc. Opt. Eng. 3678, 552 (1999).
33. T. Homma and Y. Murao, “A Spin-on-Glass Film Treatment Technology Using a Fluoroalkoxysilane Vapor at Room Temperature”, J. Electrochem. Soc.140, 2046(1993).
34. D. T. Price, R. J. Gutmann, and S. P. Murarka, “Damascene copper interconnects with polymer ILDs”, Thin Solid Films 308, 523 (1997).
35. A. Rajagopal, C. Gregoire, J. J. Lemaire, J. J. Pireaux, M. R. Baklanov, S. Vanhaelemeersch, K. Maex, and J. J. Waeterloos, “Surface characterization of a low dielectric constant polymer–SiLK polymer, and investigation of its interface with Cu”, J. Vac. Sci. Technol. B 17, 2336 (1999).
36. W. Chang, S. M. Jang, C. H. Yu, S. C. Sun, and M. S. Liang, “A manufacturable and reliable low-k inter-metal dielectric using fluorinated oxide (FSG)”, IEEE IITC Proc.
131 (1999).
37. J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, and M. Ino, “Reduction of wiring capacitance with new low dielectric SiOF interlayer film for high speed/low power sub-half micron CMOS”, IEEE VLSI Proc. 59 (1994).
38. T. Fukuda, T. Hosokawa, Y. Nakamura, K. Katoh, and N. Kobayashi, “Highly reliable SiOF film formation by ECR-CVD using SiF2H2”, IEEE VLSI Proc. 114 (1996).
39. S. W. Lim, Y. Shimogaki, Y. Nakano, and K. Tada, “Preparation of low dielectric constant F-doped SiO2 films by plasma enhanced chemical vapor deposition”, Appl.
Phys. Lett. 68, 832 (1996).
40. M. J. Shapiro, S. V. Nguyen, T. Matsuda, and D. Dobuzinsky, “CVD of fluorosilicate glass for ULSI applications”, Thin Solid Films 270, 503 (1995).
41. A. Grill, “Plasma enhanced chemical vapor deposited SiCOH dielectrics: from low-k to extreme low-k interconnect materials”, J. Appl. Phys. 93, 1785 (2003).
42. C. Kittel, Introduction to Solid State Physics, 7th ed. 1, John Wiley and Sons, New York, Ch. 13. (1996).
43. H. Miyajima, R. Katsumata, Y. Nakasaki, and N. Hayasaka, “Water absorption properties of Fluorine-doped SiO2 films using plasma-enhanced chemical vapor deposition”, Jpn. J. Appl. Phys. 35, 6217 (1996).
44. G. Y. Lee, D. C. Edelstein, R. Conti, W. Cote, K. S. Low, D. Dobuzinsky, G. Feng, K. Dev, P. Wrschka, P. Shafer, R. Ramachandran, A. Simpson, E. Liniger, E. Simonyi, T. Dalton, T. Spooner, C. Jahnes, E. Kaltalioglu, and A. Grill, Advanced Metallization Conference, San Diego, CA, 3–5 October, (2000).
45. A. Grill and V. Patel, “Novel Low-k Dual-phase Materials Prepared by PECVD”, Mater. Res. Soc. Symp. Proc. 612, D2.9 (2000).
46. T. Nakano and T. Ohta, “Relationship Between Chemical Composition and Film Properties of Organic Spin-on Glass”, J. Electrochem. Soc. 142, 918 (1995).
47. S. Kawamura, T. Ohta, K. Omote, Y. Ito, R. Suzuki and T. Ohdara, “New Measurement Technique of pore size distribution of porous low-k film”, IEEE IITC 195 (2000).
48. J. S. Chou and S. C. Lee, "Effect of Porosity on Infrared Absorption Spectra of Silicon Dioxide", J. Appl. Phys. 77, 1805 (1995).
49. A. Grill, V. Patel, “Ultralow-k Dielectrics Prepared by Plasma-Enhanced Chemical Vapor Deposition”, Appl. Phys. Lett. 79, 803 (2001).
50. S. K. Jang-Jean, Y. L. Wang, C. P. Liu, W. S. Hwang. W. T. Tseng, C. W. Liu, “In situ fluorine-modified organosilicate glass prepared by plasma enhanced chemical vapor deposition”, J. Appl. Phys. 94, 732 (2003).
51. P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, “Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 4, 689 (1986).
52. G. Lucovsky, M. J. Manitini, J. K. Srivastava, and E. A. Irene, "Low-temperature Growth of Silicon Dioxide Films", J. Vac. Sci. Technol. B5, 530 (1987).
53. I. Simon, Modern Aspects of the Vitreous Silica (Gordon and Breach, New York, 1975).
54. T.W. Mountsier, J.A. Samuels and R.S. Swope, Mater. Res. Soc. Symp. Proc. 511, 259 (1998).
55. K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma and Z. S. Yanovitskaya, ” Low dielectric constant materials for microelectronics”, J. Appl. Phys.
93, 8793 (2003).
56. D.Shamiryan, K.Weidner, W.D.Gray, M.R.Baklanov, S.Vanhaelemeersch, K.Maex,“Comparafive study of PECVD SiOCH Low-k films obtained at different deposition conditions,”Microelectron Eng. 64, 361 (2002).
57. W. L. Wu, W. E. Wallace, E. K. Lin, G. W. Lynn, C. J. Glinka, E. T. Ryan, and H. M. Ho,” Properties of nanoporous silica thin films determined by high-resolution x-ray
reflectivity and small-angle neutron scattering”, J. Appl. Phys. 87, 1193 (2000).
58. D. W. Gidley, W. E. Frieze, T. L. Dull, J. Sun, A. F. Yee, C. V. Nguyen, and D. Y. Yoon,
“Determination of pore-size distribution in low-dielectric thin films”, Appl. Phys. Lett. 76, 1282 (2000).
59. M. P. Petkov, M. H. Weber, K. G. Lynn, and K. P. Rodbell,” Probing capped and uncapped mesoporous low-dielectric constant films using positron annihilation lifetime spectroscopy”, Appl. Phys. Lett. 77, 2470 (2000).
60. M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry”, J. Vac. Sci. Technol. B 18, 1385 (2000).
61. E. Huang, M. F. Toney, W. Volksen, D. Mecerreyes, P. Brock, H.-C. Kim, C. J. Hawker, J. L. Hedrick, V. Y. Lee, T. Magbitang, R. D. Miller and B. Lurio.,” Pore size
distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering”, Appl. Phys. Lett. 81, 2232 (2002).
62. S. I. Nakao, J. Ushio, T. Ohno, T. Hamada, Y. Kamigaki, M. Kato, K. Yoneda, S. Kondo, and N. Kobayashi, “UV/EB Cure Mechanism for Porous PECVD/SOD Low-k SiCOH Materials”, Proc. IEEE Int. Interconnect Technology Conf. 66 (2006).
63. A. Grill and D. A. Neumayer, “Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy
characterization”, J. Appl. Phys. 94, 6697 (2003).
64. M. Petersen, M. T. Schulberg, and L. A. Gochberg, “Density functional theory analysis of infrared modes in carbon-incorporated SiO2”, Appl. Phys. Lett. 82, 2041 (2003).
65. Y. H. Kim, M. S. Hwang, H. J. Kim, and Y. Lee, Y. H. Kim, M. S. Hwang, H. J. Kim, J. Y. Kim, Y. Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films”, J. Appl. Phys. 90, 3367 (2001).
66. T. K. S. Wong, B. Liu, B. Narayanan, V. Ligatchev, and R. Kumar, “Investigation of deposition temperature effect on properties of PECVD SiOCH low-k films”, Thin Solid Films 462, 156 (2004).
67. S. Lee, J. Yang, S. Yeo, J. Lee, D. Jung, J. H. Boo, H. Kim and H. Chae., “Effect of Annealing Temperature on Dielectric Constant and Bonding Structure of Low-k SiCOH Thin Films Deposited by Plasma Enhanced Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 46, 536 (2007).
68. E. Martinez, N. Rochat, C. Guedj, C. Licitra, G. Imbert, and Y. Le Friec, “ Influence of electron-beam and ultraviolet treatments on low-k porous dielectrics”, J. Appl. Phys. 100, 124106 (2006).
69. Y.L. Cheng, Y.L. Wang, G.J. Hwang, M.L. O’Neill, E.J. Karwacki, P.T. Liu and C.F. Cheng, “Effect of deposition temperature and oxygen flow rate properties of low dielectric constant SiCOH film prepared by plasma enhanced chemical vapor deposition using diethoxymethyl-silane”, Surf. Coat. Technol 200, 3134, (2006).
70. A M. Urbanowicz, K. Vanstreels, P. Verdonck, E. V. Besien, T. Christos, D. Shamiryan, S. D. Gendt, and M. R. Baklanov,” Effect of UV wavelength on the hardening process
of porogen-containing and porogen-free ultralow-k plasma-enhanced chemical vapor deposition dielectrics”, J. Vac. Sci. Technol. B29 032201 (2011).
71. C. H. Huang, N. F. Wang, Y. Z. Tsai, C. I. Hung, and M. P. Houng, “Intra-level voltage ramping-up to dielectric breakdown failure on Cu/porous low-k interconnections in 45
nm ULSI generation”, Microelectron. Eng. 87 1735 (2010).
72. M. R. Baklanov, L. Zhao, E. V. Besien, and M. Pantouvaki, “Effect of porogen residue on electrical characteristics of ultra low-k materials”, Microelectron. Eng. 88 (2011) 990.
73. S. C. Chang, J. M. Shieh, C.C. Hung, B. T. Dai and M. S. Feng,” Pattern Effects on Planarization Efficiency of Cu Electropolishing”, Jpn. J. Appl. Phys. 41, 7332 (2002).
74. F. H. Giles and J. H. Bartlett,” Anodic Behavior of Copper in Phosphoric Acid”, J. Electrochem. Soc. 108, 266 (1961).
75. T. Du, J. Chen, D. Cao,“ N,N-Dipropynoxy methyl amine trimethyl phosphonate as corrosion inhibitor for iron in sulfuric acid“, J. Mater. Sci. 36, 3903 (2001).
76. J. M. Bastidas, J. L. Polo, E. Cano, C. L. Torres, “Tributylamine as corrosion inhibitor for mild steel in hydrochloric acid”,J. Mater. Sci. 35, 2637 (2000).
77. K. Kojima and C. W. Tobias,” Interpretation of the Impedance Properties of the Anode-Surface Film in the Electropolishing of Copper in Phosphoric Acid”, J.
Electrochem. Soc.120, 1202 (1973).
78. F. H. Giles and J. H. Bartlett,” Anodic Behavior of Copper in Phosphoric Acid”, J. Electrochem. Soc 108, 266 (1961).
79. E. S. M. Sherif, R. M. Erasmus, J. D. Comins, “Effects of 3-amino-1,2,4-triazole on the inhibition of copper corrosion in acidic chloride solutions”, J. Colloid Interface Sci. 311, 144 (2007).
80. L. Larabi , O. Benali , S. M. Mekelleche , and Y. Harek,” 2-Mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid” Appl. Surf. Sci. 253, 1371 (2006).
81. M. E. Orazem, P. Shukla, and M. A. Membrino,” Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements”,
Electrochim. Acta. 47, 2027 (2002).
82. H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu,” Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions”, Corros. Sci. 45,
867 (2003).
83. F. B. Growcock, R. J. Jasinski, “Time-Resolved Impedance Spectroscopy of Mild Steel in Concentrated Hydrochloric Acid”, J. Electrochem. Soc. 136, 2310 (1989).
校內:2022-12-31公開