| 研究生: |
林達遠 Lin, Ta-Yuan |
|---|---|
| 論文名稱: |
高階緩坡方程式之理論解析 Theoretical Formulation of Higher-Order Mild-Slope Equation |
| 指導教授: |
許泰文
Hsu, Tai-Wen 黃煌煇 Hwung, Hwung-Hweng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 緩坡方程式 、非線性 、底床 |
| 外文關鍵詞: | mild-slope equation, nonlinearity, bottom slope |
| 相關次數: | 點閱:167 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用Chen等人 (2005;2006) 使用雙參數攝動法 (two-parameter perturbation method) 所求解之三階勢能函數,從中得到其所對應之水深函數,代入 Laplace 方程式中進行底部至水面之積分,得到新型式之高階緩坡方程式 (higher-order mild-slope equation),改良現有緩坡方程式線性波的限制。本文之非線性效應包含波浪尖銳度 (wave steepness) 和底床坡度,文中推導之階量為三階,即 , , ,式中 為波浪尖銳度, 為週波數, 為波浪振幅, 為底床坡度。本文同時遵循前人求解緩坡方程式之方法,在考慮波浪變形之方程式型式 (包含前進波和反射波),將此高階緩坡方程式以演進型態緩坡方程式 (Evolution Equation of Mild-Slope Equation, EEMSE) 求解偏微分方程式,若僅考慮入射前進波變形時,則將此高階緩坡方程式轉換成拋物線型態緩坡方程式 (Parabolic Mild-Slope Equation, PMSE),忽略反射波之變形。
本文所發展之數值模式考慮底床坡度效應,經由本文模式計算波浪通過等斜坡底床地形之結果與前人研究 (Guza 和Bowen, 1976;Chen等人, 2005、2006) 成果比較發現本文模式可以合理有效地反應波浪受到斜坡底床之影響所衍生之波形變化。文中並應用本文模式針對波浪通過不同坡度之波形變化進行探討,分析各階次對線性波波高之影響量。在 階次部分,隨著相對水深變淺,在中間性水深與淺水波情況下,發現有明顯的線性波波高影響量存在,在相對水深 =1.3 左右時,其波高影響量達到最大值,在 階次部分,當相對水深 為深水波與中間性水深情況下,其波高影響量為負修正量,在相對水深 =2.5 左右時,其波高影響量最大,但隨著相對水深繼續變淺,其波高影響量會逐漸變小,並在相對水深 =1.0 左右時,其波高影響量會由負修正量轉變成正修正量,在 階次部分,相對水深 對波高影響量並不大。本文同時模擬波浪通過橢圓形淺灘底床、半圓形斜坡底床地形與潛堤底床地形,模式計算結果與實驗資料相比較呈現合理之一致性。
In this thesis a higher-order mild-slope equation (HOMSE) was derived in order to investigate wave transformations of waves propagating over the sloping bottom more realistically. A new depth function derived by Chen et al. (2005; 2006), which includes the nonlinearity and the bottom slope , was introduced in the depth averaged integral equation, where is the wave steepness, is the wavenumber, and is the wave amplitude. A new depth-integrated mild-slope equation was thus derived using the above mentioned depth function perturbed to the third-order. To model a time-harmonic motion of water waves in varying water depth, both evolution equation of mild-slope equation (EEMSE) and parabolic mild-slope equation (PMSE) were used. The former consists of progressive and reflected waves, while the latter only comprises progressive waves.
The numerical models were developed by the finite difference scheme in corporate with alternative direct implicit (ADI) method, it has the advantage to save computer storage and time consuming when the model is applied in a large coastal area. The validity of the model was examined by typical examples of wave travelling over a sloping bottom. The results reveal that the present model are in good agreement with the theory of Guza and Bowen (1976) and Chen et al. (2005; 2006). The impact of each nonlinear term in the accuracy of the wave height was addressed. The numerical results show that the influence of the nonlinearity depends on the relative water depth . The effect of nonlinearity on wave height variation increases first to and decreases with decreasing. For , it increases until and then decreases with the decrease of . The influence of is not significant. It is concluded that the effect of bottom slope and nonlinearity on wave height may be noticeable.
The present model is applied to predict wave transformations due to an elliptical shoal and s loping bottom with circular iso-depths. Numerical results are in good agreement with laboratory observations. The implementation of HOMSE shows that the present model is capable of describing waves travelling over an arbitrary topography.
1. Beji,S.,Ohtama, T., Battjes, J.A. and Nadaoka, K., “Transformation of non-breaking waves over a bar,” Coastal Engineering, pp. 51-61 (1992).
2. Berkhoff, J.C.W., “Computations of combined refraction-diffraction”, Proceeding 13th International Conference Coastal Engineering, ASCE, Canada, pp. 471-490 (1972).
3. Berkhoff, J.C.W., Booij, N. and Radder, A.C. “Verification of numerical wave propagation models for simple harmonic linear water waves,” Coastal Engineering, Vol. 6, pp.255-279 (1982).
4. Biesel, F. “Study of wave propagation in water of gradually varying depth,” InGravity Waves, U.S. National Bureau of Standards, Circular 521, pp. 243-253 (1952).
5. Booij, N., “Gravity waves on water with non-uniform depth and current”, PhD Thesis. Delft University of Technology, Delft, the Netherlands, pp. 130 (1981).
6. Chamberlian, P.G. and Porter, D., “The modified Mild-Slope equation,” Journal of Fluid Mechanics, Vol. 291, pp. 393-407 (1995).
7. Chen, Y.Y., Hwung, H.H. and Hsu, H.H., “Theoretical analysis of surface waves propagation on sloping bottoms part 1,” Wave Motion, Vol. 42, pp. 335-351 (2005).
8. Chen, Y.Y., Hsu, H.H., Chen, G.Y. and Hwung, H.H., “Theoretical analysis of surface waves shoaling and breaking on a sloping bottom part 2. nonlinear waves,” Wave Motion, Vol. 43, pp. 339-356 (2006).
9. Copeland, G.J.M., “A practical alternative to the mild-slope wave equation,” Coastal Engineering, Vol. 9, pp.125-149 (1985).
10. Dalrymple, R. A., Suh, K., Kirby, J. T. and Chae, J. W., ”Models for very wide-angle water waves and wave diffraction. Part 2. Irregular bathymetry,” Journal of Fluid Mechanics, Vol. 201, 299-322 (1989).
11. Djordjevic, V.D. and Rdekopp, L.G., “On the development of packets of surface gravity wave moving over an uneven bottom,” Z. Angew. Math. Phys., Vol. 29, pp. 950-962 (1978).
12. Hsu, T.W. and Wen, C.C., ”A parabolic equation extened to account for rapidly varying topography”, Ocean Engineering, Vol. 28, pp. 1479-1498 (2001a).
13. Hsu, T.W. and Wen, C.C., “On radiation boundary conditions and wave transformation across the surf zone”, China Ocean Engineering, Vol. 15, No. 3, pp. 395-406 (2001b).
14. Hsu, T.W., Lin, T.Y., Wen, C.C. and Ou, S.H.,. “A complementary mild-slope equation derived using higher-order depth function for waves obliquely propagation on sloping bottom,” Physics of Fluids, Vol. 18, pp. 087106-1-14 (2006).
15. Ito, Y. and Tanimoto, K., “A method of numerical analysis of wave propagation-application to wave diffraction and refraction,” Proceeding 13th International Conference Coastal Engineering, ASCE, pp. 503-522 (1972).
16. Kaihatu, J. M. and Kirby, J. T., “Spectral evolution of directional Finite amplitude dispersive waves in shallow water,” Proceeding 23th International Conference Coastal Engineering, Venice. ASCE, pp. 364-377 (1992).
17. Kaihatu, J. M. and Kirby, J. T., “Nonlinear transformation of waves in finite Water depth,” Physics of Fluids, Vol. 7, No. 8, pp. 1-12 (1995)
18. Kirby, J.T. and Dalrymple, R.A., “A parabolic equation for the combined refraction - diffraction of stokes waves by mildly varying topography,” Journal of Fluid Mechanics, Vol. 136, pp. 453-466 (1983).
19. Kirby, J.T. and Dalrymple, R.A., “Verification of a parabolic equation for propagation of weakly – nonlinear waves,” Coastal Engineering, Vol. 8, pp. 219-232 (1984).
20. Kirby, J.T., “Higher-order approximation in the parabolic equation method for water waves,” Journal of Geophysical Research, Vol.91, No. C1, pp. 933-952 (1986).
21. Kirby, J.T., “Parabolic wave computations in non-orthogonal coordinate system,” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 114, No. 3, pp. 673-685 (1988).
22. Kriby, J.T. and and Dalrymple, R.A, “User’s manual, combined refraction/diffraction model, REF/DIF 1, Ver. 2.3,” Center of Applied Coastal Research, Department of Civil Engineering, University of Dealaware, Newwark, De 19716 (1991).
23. Lee, C., Park, W.S. Cho, Y.S. and Suh, K.D., “Hyperbolic mild-slope equations extended to account for rapidly varying topography,” Coastal Engineering, Vol. 34, pp. 243-257 (1998).
24. Li, B., “An evolution equation for water waves,” Coastal Engineering, Vol. 23, pp. 227-242 (1994a).
25. Li, B., “A generalized conjugate gradient model for the mild slope equation,” Coastal Engineering, Vol. 23, pp. 215-225 (1994b).
26. Li, B., “Parabolic model for water waves,” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 123, No. 4, pp. 192-199 (1997).
27. Liu, P.L.F. and Tsay, T.K., “Refraction – diffraction model for weakly nonlinear water waves,” Journal of Fluid Mechanics, Vol. 136, pp. 453-466 (1984).
28. Maa, J.P.Y., Hsu, T.W., Tsai, C.H. and Juang, W.J., “Comparison of wave refraction and diffraction models,” Journal of Coastal Research, Vol. 16, No. 4, pp.1073-1082 (2000).
29. Madsen, P.A. and Larsen, J., “An efficient finite-difference approach to the mild-slope equation,” Coastal Engineering, Vol. 11, pp. 329-351 (1987).
30. Nadaoka, K.S., Beji, S. and Yasuyuki, N., “A fully dispersive weakly nonlinear model for water waves,” Proc. Roy. Soc. Lond., A 453, pp. 303-318.
31. Panchang, V.G., Cushman-Roisin, B. and Pearce, B.R., “Combined refraction-diffraction of short-waves in large coastal regions,” Coastal Engineering, Vol. 12, pp.133-156 (1982).
32. Radder, A.C., “On the parabolic equation method for water wave propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
33. Sommerfeld, A., Mechanics of deformable bodies, Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York (1964).
34. Suh, K.D., Lee, C. and Part, W.S., “Time-dependent equations for wave propagation on rapidly varying topography,” Coastal Engineering, Vol. 32, pp. 91-117 (1997).
35. Tang, Y. and Oullet, Y.,“Models for combined refraction-diffraction of water waves with nonlinear harmonics,” In: Proceeding of the Annual Conference of Canadian Society for Civil Engineering, Quebec, Vol. 2, pp.421-430 (1992).
36. Tang, Y., “Linear and nonlinear water waves on water with variable depth –theoretical and numerical models for combined refraction – diffraction with reflection,” Ph.D. dissertation, Dept. of Civil Engineering Laval University, Quebec (1994).
37. Tang, Y. and Oullet, Y., “A new kind of nonlinear mild-slope equation for combined refraction – diffraction of multifrequency,” Coastal Engineering, Vol. 31, pp. 3-36 (1997).
38. Tsay, T.K. and Liu,P.L.F., “Numerical solution of water wave refraction and diffraction problems in the parabolic approximation,” Journal of Geophysical Research, Vol. 87, No.C10, pp. 7932-7940 (1982).
39. Tsay, T.K. and Liu,P.L.F., “A finite element model for wave redraction and diffraction,” Applied Ocean Research, Vol. 5, No. 1, pp. 30-37 (1983).
40. Watanabe, A. and Maruyama, K., “Numerical modeling of nearshore wave field under combined refraction, diffraction and breaking,” Coastal Engineering in Japan, Vol. 29, pp.19-39 (1986).
41. Wei, G., Kirby, J. T. and Sinha, A., ”Generation of waves in Boussinesq models using a source function method,” Coastal Engineering, Vol. 36, 271-299 (1999).
42. Whalin, R.W., “The limit of application of linear wave refraction theory in a convergence zone,” Report No. H-71-3, U.S. Army Crops of Engineers Waterway Experiment Station, Vicksburg, MS (1971).
43. Williams, R.G., Darbyshire, J. and Holmes, P., “Wave refraction and diffraction in caustic region: a numerical solution and experimental validation,” Proceeding of Institute Civil Engineering, Vol. 69, No. 2, pp. 635-649 (1980).
44. Willmot, C.J., “On the validation of models,” Physical Geography, Vol. 2, No. 2, pp. 219-232 (1981).
45. 陳陽益,「平緩坡度底床上前進的表面波」,第十九屆海洋工程研討會論文集,pp.112-121 (1997)。
46. 蔡清標,陳鴻彬,「以有限體積法在近岸波場之初步應用」,第十九屆海洋工程研討會論文集,台中,pp. 73-79 (1997)。
47. 楊炳達,陳陽益,湯麟武,歐善惠,「前進波列斜向傳遞於等緩坡度底床之研究」, 第二十二屆海洋工程研討會論文集,高雄,pp. 1-8 (2000)。
48. 許泰文,藍元志,林貴斌,「以有限元素法模擬波浪大角度入射之波浪變形」,第二屆國際海洋大氣會議論文集,台北,pp. 160-165 (2000)。
49. 蔡丁貴、劉立方,「非線性波浪引起港池振盪之研究 (三)」,國立台灣大學土木研究所 (2001)。
50. 溫志中,「修正緩坡方程式之研發與應用」,國立成功大學水利及海洋工程研究所,博士論文 (2001)。
51. 林達遠,「非線性緩坡方程式之初步研究」,國立成功大學水利及海洋工程研究所,碩士論文 (2003)。
52. 陳陽益,「非陡坡底床上前進波的非線性解析:I. 系統化攝動展開模式」,第二十五屆海洋工程研討會論文集,pp.39-48 (2003a)。
53. 陳陽益,「非陡坡底床上前進波的非線性解析:II. 至 , 階的解析解及印證」,第二十五屆海洋工程研討會論文集,pp.49-58 (2003b)。
54. 許泰文,「近岸水動力學」,中國土木水利工程學會,科技圖書(2003)。
55. 許弘莒,「斜坡底床上前進波的非線性解析」,國立成功大學水利及海洋工程研究所,博士論文 (2005)。