| 研究生: |
潘志誠 Pan, Chin-Cheng |
|---|---|
| 論文名稱: |
低損耗微波介電材料(Zn1–xMgx)3Nb2O8及其在無線通訊元件之應用 Low-Loss Microwave Dielectrics Using (Zn1–xMgx)3Nb2O8 and Their Applications for Wireless Communication Components |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 低損耗 、微波介電材料 、無線通訊 、濾波器 |
| 外文關鍵詞: | Low-loss, Microwave Dielectric Materials, wireless communication, filter |
| 相關次數: | 點閱:118 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,且嘗試添加燒結促進劑,降低其燒結溫度;第二部份將介紹其在被動元件之應用,並實作於不同基板上探討元件尺寸的改善。
第一部份首先要介紹(Zn1–xMgx)3Nb2O8陶瓷系統之微波介電特性。由本實驗中可得知(Zn1–xMgx)3Nb2O8擁有最佳的微波介電特性,其介電係數為21.52,Q×f為130,000 GHz (at 9.07 GHz),且共振頻率之溫度飄移係數為–84 ppm/°C,但其燒結溫度達1180 °C,為了能應用於LTCC (低溫共燒陶瓷),故分別添加不同燒結促進劑CuO和B2O3以降低其燒結溫度,並探討添加後對其介電特性與材料之微結構是否產生影響。
第二部份根據諧振器的耦合技術和結合方法,利用基本的端點耦合微帶線結構結合一具有半波長SIR結構的交錯耦合諧振器(操作在2.45 GHz)及半波長U型髮夾式諧振器(操作在5.2 GHz),設計一雙頻(2.45/5.2 GHz)帶通濾波器。由於止帶中產生三個傳輸零點,可有效改善濾波器的頻率響應,此雙頻帶通濾波器中心頻率操作在2.45 GHz及5.2 GHz適合應用於WLAN通訊系統中。最後,我們將此電路實作在FR4、Al2O3和(Zn0.95Mg0.05)3Nb2O8+3 wt% B2O3基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能達到提升效能和縮小面積的需求。
There are two main subjects in this thesis. First, we will discuss the low loss dielectric material, and try to add different sintering aids in order to decrease the sintering temperature. Second, there will be a discussion of passive components and improvement of circuit size in different substrates.
First, the microwave dielectric properties of (Zn1–xMgx)3Nb2O8 ceramic system have been investigated. The experiment results show that (Zn0.95Mg0.05)3Nb2O8 ceramics has the best properties. The dielectric constant of (Zn0.95Mg0.05)3Nb2O8 is 21.52, Q×f is 130,000 GHz (at 9.07 GHz), and τƒ is –84 ppm/°C. Nevertheless, the sintering temperature is 1180 °C. In order to decrease the sintering temperature for application to LTCC, we trying to add different sintering aids CuO and B2O3, respectively. And concern about whether the dielectric properties and microstructure would be affected by adding the sintering aids.
Second, according to the coupling technique and the combination method. The basic end-coupled microstrip line structure is combined with a 2.45 GHz λ/2 cross coupling resonator and a 5.2 GHz λ/2 U-shaped hairpin resonator to design a dual-band (2.45/5.2 GHz) bandpass filter with three transmission zeros generated in the stop-bands to modify the response of the filter. The dual-band bandpass filter had the central frequencies of 2.45 and 5.2 GHz and was suitable for the applications in the WLAN communication system. Finally, the pattern was printed on FR4, Al2O3 and (Zn0.95Mg0.05)3Nb2O8+3 wt% B2O3 substrates. By measured their frequency responses, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.
[1]H. M. O’bryan, J. Thomson, and J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
[2]G. Wolfram and H. E. Göbel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
[3]J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” J. J. Appl. phys., 33 [9B] 5466–5470 (1994).
[4]Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3–TiO2 Ceramics by Annealing Treatment,” J. J. Appl. phys., 43 [6A] L749–L751 (2004).
[5]C. L. Huang, T. J. Yang, and C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a Compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
[6]D. W. Kim, J. H. Kim, J. R. Kim, and K. S. Hong, “Phase Constitutions and Microwave Dielectric Properties of Zn3Nb2O8–TiO2,”Jpn. J. Appl. Phys., Part 1-Regular Papers Short Notes & Review Papers 40 : 5994 (2001).
[7]W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
[8]David M. Pozar “Microwave Engineering,” Addison-Wesley, (1998).
[9]D. Kajfez, A. W. Glisson, and J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
[10]D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News., 13 152–161 (1983).
[11]D. Kajfez and P. Guillon, “Dielectric Resonators,” Artech House (1989).
[12]余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007).
[13]J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
[14]W. J. Huppmann and G. Petzow, “Sintering Processes,” Plenum Press, (1979).
[15]R. M. German, “Liquid Phase Sintering,” Plenum Press, (1985).
[16]J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
[17]W. F. Smith, 劉品均(譯), 施佑蓉(譯), “材料科學與工程,” 第三版, 高立圖書, (2005).
[18]R. L. Geiger, P. E. Allen, and N. R. Strader, “VLSI Design Techniques for Analog and Digital Circuits,” McGraw-Hill, (1990).
[19]R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
[20]G. Kompa, “Practical Microstrip Design and Applications,” Artech House, (2005).
[21]張盛富, 戴明鳳, “無線通信之射頻被動電路設計,” 全華出版社, (1998).
[22]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
[23]J. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications,” John Wiley & Sons, (2001).
[24]G. L. Matthaei, L. Young, and E. M. T.Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures,” Artech House, (1980).
[25]E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
[26]M. Makimoto and S.Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., 28 [12] 1413–1417 (1980).
[27]Q. X. Chu and F. C. Chen, “A Compact Dual-Band Bandpass Filter Using Meandering Stepped Impedance Resonators,” IEEE Microw. Wireless. Compon. Lett., 18 [4] 320–322 (2008).
[28]C. F. Yang, H. C. Yang, C. M. Cheng, K. H. Chen, and Y. C. Chen, “Design a New Structure 2.4 GHz/5.2 GHz Dual-Band Bandpass Filters On The MgTa1.5Nb0.5O6 Ceramic,” Microwave Opt. Technol. Lett., 51 : 1085 DOI 10.1002/mop.24264 (2009).
[29]B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[30]W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[31]P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[32]Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[33]H. J. Lee, I. T. Kim, and K. S. Hong, “Dielectric properties of AB2O6 compounds at microwave frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta),” Jpn. J. Appl. Phys., Part 2-LETTERS 36 : L1318 (1997).
[34]A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, “Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction,” J. Eur. Ceram. Soc. 27 : 2977 DOI 10.1016/j.jeurceramsoc.2006.11.064 (2007).