| 研究生: |
陳睿彥 Chen, Jui-Yen |
|---|---|
| 論文名稱: |
明渠水深流速分佈公式之探討 Flow-Depth Velocity Distribution Equations for Open Channel Flows |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 流速分佈 、冪定律 、對數律 |
| 外文關鍵詞: | velocity profile, log-low, power-low |
| 相關次數: | 點閱:50 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文首先回顧對數律明渠水深流速分佈公式及Coles(1956)尾流修正式,比對在不同渠流環境下之尾流強度係數 及影響流速分佈之因素。結果顯示前人在不同渠流環境下之 值介於-0.27至0.65之間,而且研究資料也顯示當壓力梯度及邊壁效應影響顯著時,調整尾流強度係數仍然無法有效修正描述流速分佈。本文提出新的流速修正方式,均以最大流速水深為基礎將流速分佈區分為上下兩個區域,每個區域均以Coles的尾流函數來描述流速分佈,但採用不同之尾流強度係數為 與 。當 等於 時,則等於Coles的流速修正方法。本文將所提之雙層流速分佈修正方法與Coleman(1981)及Kirkgöz and Ardiclioğlu(1997)實測資料作對比,結果顯示本文所提之雙層流速分佈模式能有效描述實測流速分佈,而尾流強度係數 值介於0.94至1.6之間, 值介於-0.02至0.69之間。
此外,本文探討冪定律流速分佈修正公式並與實測資料作對比,結果顯示冪定律修正式也能有效描述實測流速分佈。其中與Coleman(1981) 實測資料作對比,本文所提之修正函數 中,當固定 時,流速修正量 介於0.15至0.28之間,且其大小與渠流平均濃度C成正比關係。
The log-low flow-depth velocity distribution equations for open channel flow and the Coles’ wake-flow function were reviewed wake-strength coefficient in the wake function at various flow conditions were compared. The result reveals that the values of are presented by previous investigators between -0.27 and 0.65. It is also found that Cloes’s revised wake-flow function can not well describe the velocity distributions for some open channel flows which are influenced by the pressure gradient and the side-wall-effects. We propose a method to overcome the problem. The velocity distribution is divided into upper region and lower region at the basis on the depth where the maximum velocity. When the two coefficients are the same which to be equal to the Cloes revised wake-flow function. Comparison of the proposed double-layer velocity distribution with measured data by Cloemen(1981) and Kirkgoz and Ardiclikglu(1997). The results show that the present proposed method can well describe the velocity distributions, with between 0.9 and 1.6 and between -0.02 and 0.69.
Besides, the modified functions for the power-low equation are also investigated in the present study. A modified function F(y/ )= is proposed for the power-low velocity distribution, and compared with the measured data. It shows that the revised power-low equation can well describe the velocity distribution. Based on Coleman’s data , and the velocity correction is between 0.15 and 0.28, and proportional with the vertically averaged volumetric sediment concentration.
1. 蔡宇龍,「應用改良式坡度-面積法分析河道阻力之研究」,國立成功大學水利及海洋工程研究所碩士論文,2000。
2. Afzalimehr, H., and Anctil, F. (2000). “Accelerating shear velocity in gravel-bed channels,” Hydrological Sciences-Journal-des Sciences Hydrologiques. Vol. 45, No. 1, pp.113-124.
3. Coles, D. (1956). “The law of the wake in the turbulent boundary layer,” J. Fluid Mechanics, Vol.1, pp.191-226.
4. Coleman, N. L. (1981). “Velocity Profiles with suspended sediment,” Journal of Hydraulic Research, Vol. 19, No. 3, pp.211-229.
5. Chen, C. L. (1991). “Unified Theory on Power Laws for Flow Resistances,” Journal of Hydraulic Engineering Vol. 117, No. 3, pp.371-389.
6. Carollo, F. G., Ferro, V., and Termini, D. (2002). “Flow Velocity measurements in Vegetated Channels,” Journal of Hydraulic Engineering Vol. 128, No.
7, pp.664-673.
7. Knight, D. W. and Patel, H. S. (1983). “Boundary Shear in Smooth Rectangular Ducts,” Journal of Hydraulic Engineering Vol. 111, No. 1, pp.29-47.
8. Kirkgöz, M. S. (1989). “Turbulent Velocity Profiles for Smooth and Rough Open Channel Flow,” Journal of Hydraulic Engineering Vol. 115, No. 11, pp.1543-1561.
9. Kirkgöz, M. S., and Ardiclioğlu, M. (1997) .“Velocity Profiles of Developing and Developed Open Channel Flow,” Journal of Hydraulic Engineering Vol. 123, No. 12, pp.1099-1105.
10. Neru, I. and Rodi, W. (1986). “Open-Channel Flow Measurements with A Laser Doppler Anemometer,” Journal of Hydraulic Engineering Vol. 112, No. 5, pp.335-355.
11. Parker, G., and Coleman, N. L. (1986). “Simple Model sediment-laden flows,” Journal of Hydraulic Engineering, Vol.112, No.5, pp.356-375.
12. Sarma, K. V. N., Lakshminarayana, P., and Lakshmana Rao, N. S. (1983). “Velocity Distribution in Smooth Rectangular Open Channels,” Journal of Hydraulic Engineering Vol. 109, No. 2, pp.270-289.
13. Smart, G. M. (1999). “Turbulent Velocity Profiles and Boundary Shear in Gravel Bed Rivers,” Journal of Hydraulic Engineering Vol. 125, No. 2, pp106-116.
14. Song, T. C., and Graf, W. H. (1994). “Non-uniform open channel over a rough flow,” Journal of Hydraulic Engineering Vol. 122, No. 1, pp1-25.
15. Song, T., and Graf, W. H. (1996). “Velocity and Turbulence Distribution in Unsteady Open-Channel Flows,” Journal of Hydraulic Engineering Vol. 122, No. 3, pp141-154.
16. Smart, G. M., Maurice, J. D., and Jeremy, M. W. (2002). “Relatively Rough Flow Resistance Equations,” Journal of Hydraulic Engineering Vol. 128, No. 6, pp568-578.
17. Tominaga, A., and Nezu, I. (1992). “Velocity Profiles in Steep Open-Channel Flows,” Journal of Hydraulic Engineering Vol. 118, No. 1,pp.73-90.
18. Umeyama, M. (1999). “Velocity and Concentration Fields in Uniform Flow with Coarse Sands,” Journal of Hydraulic Engineering Vol. 125, No. 6, pp.653-656.
19. Xia, R. (1997) “Relation between Mean and Maximum Velocities in A Natural River,” Journal of Hydraulic Engineering Vol. 123, No. 8, pp.720-723.
20. Yen, B. C. (2002). “Open Channel Flow Resistance,” Journal of Hydraulic Engineering Vol. 128, No. 1, pp20-38.