| 研究生: |
曾昱叡 Zeng, Yu-Ruei |
|---|---|
| 論文名稱: |
具蜂巢式六角形結構之四線圈式無線電能傳輸系統 Four-Coil Wireless Power Transfer System with Cellular Hexagon Structure |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 無線電能傳輸 、四線圈式磁共振耦合 、多單元蜂巢式六角形結構 |
| 外文關鍵詞: | wireless power transfer, four-coil magnetic resonance coupling, multi-element cellular hexagon structure |
| 相關次數: | 點閱:88 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨就四線圈式無線電能傳輸系統之耦合結構進行研究,並提出具多單元蜂巢式六角形線圈結構。為了提升四線圈式磁共振耦合結構之整體磁場發射面積與水平錯位容忍度,文中利用電磁場模擬軟體分析各種耦合結構,比較各優缺點,並針對多單元結構配置與線圈參數進行設計與討論,提出多單元蜂巢式六角形結構,同時透過兩個獨立共振線圈,可降低激勵電源與負載端對其諧振特性之影響,以提高電能傳輸效率與傳輸距離,有別於雙線圈式磁感應耦合結構傳輸距離較短之缺點。最後將電能傳輸平台尺寸設計為50 cm×52 cm,經實驗結果可得知,當傳輸距離為20 cm並且精準對位時,整體系統最大傳輸效率為70.15%,最大輸出功率為94.46 W。當傳輸距離為20 cm並且水平偏移12 cm時,整體系統傳輸效率可維持在60%以上。
This thesis is aimed to study on the coupling structure for four-coil wireless power transfer system. The coupling structure in the form of multi-element cellular hexagon structure is proposed. In order to improve the overall magnetic field emission area and misalignment tolerance of four-coil magnetic resonance coupling structure, the electromagnetic field simulation software is used to analyze various coupling structures, and the advantages and disadvantages of the structure are compared as well. Besides, the multi-element structure and parameters of coil are designed and the coupling structure in the form of multi-element cellular hexagon structure is proposed in the thesis. By means of two independent resonant coils, the influence of resonance characteristics on the excitation power supply and load end can be reduced to improve the power transmission efficiency and transmission distance. Finally, the size of power transfer platform is design as 50 cm×52 cm. The experimental results show that when the transmission distance is 20 cm, the output power can be up to 94.46 W and the transmission efficiency of the system can be up to 70.15%. When the transmission distance is 20 cm and the misalignment is 12 cm, the transmission efficiency of the system can be maintained above 60%.
[1] D. J. Young, P. Cong, M. A. Suster, N. Chimanonart, and W. H. Ko, “Wireless power recharging for implantable bladder pressure chronic monitoring,” in Proc. IEEE NEMS, 2010, pp. 604-647.
[2] H. Matsuki, M. Shiiki, K. Murakami, and T. Yamamoto, “Investigation of coil geometry for transacutaneous energy transmission for artificial heart,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2406-2408, Sep. 1992.
[3] S.Y.R. Hui and W.W.C. Ho, “A new generation of universal contactless battery charging platform for portable consumer electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005.
[4] J. Achterberg, E. A. Lomonova, and J. d. Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, May 2008.
[5] Y. You, B. H. Soong, S. Ramachandran, and W. Liu, “Palm size charging platform with uniform wireless power transfer,” in Proc. IEEE Conf. Control Automation Robotics and Vision, 2010, pp. 85-89.
[6] P. Raval, D. Kacprzak, and A. P. Hu, “A wireless power transfer system for low power electronics charging applications,” in Proc. IEEE Conf. Industrial Electronics and Applications, 2011, pp. 520-525.
[7] W. X. Zhong, X. Liu, and S. Y. R. Hui, “A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4136-4144, Sep. 2011.
[8] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of characteristics on planar contactless power transfer systems,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2980-2993, June 2012.
[9] C. Y. Huang, J. T. Boys, G. A. Covic, and M. Budhia, “Practical considerations for designing IPT system for EV battery charging,” in Proc. IEEE VPPC, 2009, pp. 402-407.
[10] Y. Hori, “Future vehicle society based on electric motor, capacitor and wireless power supply,” in Proc. Int. Conf. Power Electronics, 2010, pp. 2931-2934.
[11] B. Gu, J. S. Lai, N. Kees, and C. Zheng, “Hybrid-switching full-bridge dc–dc converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1132-1144, Mar. 2013.
[12] N. H. Kutkut and K. W. Klontz, “Design considerations for power converters supplying the SAE j-1773 electric vehicle inductive coupler,” in Proc. IEEE APEC, 1997, pp. 841-847.
[13] A. S. Masoum, S. Deilami, P. S. Moses, and A. Abu-Siada, “Impacts of battery charging rates of plug-in electric vehicle on smart grid distribution system,” in Proc. IEEE Eur. Conf. Innovative Smart Grid Technologies, 2010, pp. 1-6.
[14] J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Tran. Ind. Appl., vol. 35, no. 4, pp. 884-895, July 1999.
[15] U. K. Madawala and D. J. Thrimawithana, “A two-way inductive power interface for single loads,” in Proc. Int. Conf. Industrial Technology, 2010, pp. 673-678.
[16] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact contactless power transfer system for electric vehicle,” in Proc. Int. Conf. Power Electronics, 2010, pp. 807-813.
[17] D. Marioli, E. Sardini, M. Serpelloni, and A. Taroni, “Contactless transmission of measurement information between sensor and conditioning electronics,” IEEE Trans. Instrums. Meas., vol. 57, no. 2, pp. 303-308, Feb. 2008.
[18] “Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology,” SAE International, U. S. A.[Online]. Available: https://www.sae.org/standards/content/j2954_201711/.
[19] K. W. Klontz, A. Esser, R. R. Bacon, D. M. Divan, D. W. Novotny, and R. D. Lorenz, “An electric vehicle charging system with 'universal' inductive interface,” in Proc. IEEE PCCON, 2002, pp. 227-232.
[20] M. Mochizuki, A. Asada, T. Ura, Z. Yoshida, K. Asakawa, T. Yokobiki, R. Iwase, T. Goto, M. Fujita, M Sato, O. L. Colombo, T. Tanaka, H. Zheng, and K. Nagahashi, “Development of seafloor geodetic observation system based on AUV and submarine cable technologies,” in Proc. IEEE Oceans, 2010, pp. 1-4.
[21] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for maglev applications,” in Proc. IEEE IAS, 2002, pp. 1586-1591.
[22] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC, 2005, pp. 1133-1136.
[23] J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, Dec. 2006.
[24] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, Oct. 2006.
[25] P. Sergeant and A. V. D. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no. 1, pp. 1-7, 2008.
[26] T. Gerrits, D. C. J. Krop, L. Encica, and E. A. Lomonova, “Development of a linear position independent inductive energy transfer system,” in Proc. IEMDC, 2011, pp. 1445-1449.
[27] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact-less power transmission system for the high-speed train,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
[28] J. Huh, S. Lee, C. Park, G. H. Cho, and C. T. Rim, “High performance inductive power transfer system with narrow rail width for on-line electric vehicles,” in Proc. IEEE ECCE, 2010, pp. 647-651.
[29] C. S. Lin, S. G. Lin, C. F. Chang, H. H. Li, and T. R. Chen, “Model of contactless power transfer system for linear track,” in Proc. IEEE PEDS, 2010, pp. 1075-1079.
[30] Y. D. Ko and Y. J. Jang, “The parameter design of the wireless power electric vehicle,” in Proc. IEEE VTC, 2014, pp. 1-5.
[31] A. Kur, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, July 2007.
[32] R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient weakly-radiative wireless energy transfer: an EIT-like approach,” Anm. Phys., vol. 324, no. 8, pp. 1783-1795, Aug. 2009.
[33] A. Karalis, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple device,” Appl. Phys. Lett., vol. 96, no. 4, p. 044102, Jan. 2010.
[34] “The wireless future of energy transfer,” Intel Co., U. S. A.[Online]. Available:http//singularityhub.com/2009006/30/the-wireless-power-tran- fer/, 2009.
[35] A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 544-554, Oct. 2010.
[36] F. Zhang, S. A. Hackworth, W. Fu, C. Li, Z. Mao, and M. Sun, “Relay effect of wireless power transfer using strongly coupled magnetic resonances,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1478-1481, May 2011.
[37] T. Duong and J. Lee, “Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp. 442-444, Aug. 2011.
[38] J. Park, Y. Tak, Y. G. Kim, Y. W. Kim, and S. Nam, “Investigation of adaptive matching method for near-field wireless power transfer,” IEEE Trans. Antennas Propag., vol. 59, no. 5, pp. 1769-1773, May 2011.
[39] Y. M. Zhang, Z. M. Zhao, and K. N. Chen, “Frequency-splitting analysis of four-coil resonant wireless power transfer,” IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2436-2445, Dec. 2013.
[40] R. Huang, B. Zhang, D. Qiu, and Y. Zhang, “Frequency splitting phenomena of magnetic resonant coupling wireless power transfer,” IEEE Trans. Magn., vol. 50. no. 11, pp. 1-4, Nov. 2014.
[41] Z. Zhang, K. T. Ckau, C. H. Liu, F. H. Li, and T. W. Ching, “Quantitative analysis of mutual inductance for optimal wireless power transfer via magnetic resonant coupling,” IEEE Trans. Magn., vol. 50, no. 11, article 8600504, Nov. 2014.
[42] Y. Zhang, Z. Zhao, and T. Lu, “Quantitative analysis of system efficiency and output power of four-coil resonant wireless power transfer,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 184-190, Mar. 2015.
[43] 賴景明,應用四線圈多環同軸型感應耦合結構於大間隙無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2014。
[44] 陳陽,四線圈式多環同軸型無線電能傳輸系統之匹配阻抗特性研究,國立成功大學電機工程學系碩士論文,2015。
[45] 林奕維,應用四線圈式共振結構於大間隙非接觸式電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2016。
[46] X. Mou, O. Groling, and H. Sun, “Energy-efficient and adaptive design for wireless power transfer in electric vehicles,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7250-7260, Sep. 2017.
[47] E. Bou-Balust, A. P. Hu, and E. Alarcon, “Scalability analysis of SIMO non-radiative resonant wireless power transfer systems based on circuit models,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 10, pp. 2574-2583, Oct. 2015.
[48] S. C. Moon and G. W. Moon, “Wireless power transfer system with an asymmetric 4-coil resonator for electric vehicle battery chargers,” in Proc. IEEE APEC, 2015, pp. 15-19.
[49] 王麒豪,應用四線圈式多單元矩陣型結構於無線電能傳輸系統之研究,國立成功大學電機工程學系碩士論文,2018。
[50] N. Yin, G. Xu, Q. Yang, J. Zhao, X. Yang, J. Jin, W. Fu, and M. Sun, “Analysis of wireless energy transmission for implantable device based on coupled magnetic resonance,” IEEE Trans. Magn. vol. 48, no.7, pp.723-726, Jan. 2012.
[51] Z. Yan, C. Zhang, Q. Yang, Y. Li, D. Xi, and Z. Wang, “Design and analysis of cuboid film resonator for wireless power transmission system based on resonant coupling,” in Proc. IEEE ICEMS, 2012, pp. 1-5.
[52] H. Hwang, J. Moon, B. Lee, and C. H. Jeong, “An analysis of magnetic resonance coupling effects on wireless power transfer by coil inductance and placement,” IEEE Trans. Consumer Electronics, vol. 60, no. 2, pp. 203-209, May 2014.
[53] S. Cheon, Y. H. Kim, S. Y. Kang, M. L. Lee, J. M. Lee, and T. Zyung, “Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2906-2914, July 2011.
[54] Z. Liu, Z. Chen, Y. Guo, and Y. Yu, “A novel multi-coil magnetically-coupled resonance array for wireless power transfer system,” in Proc. IEEE WPTC, 2016, pp. 1-3.
[55] Y. S. Eroglu, A. Sahin, I. Guvenc, N. Pala, and M. Yuksel, “Multi-element transmitter design and performance evaluation for visible light communication,” in Proc. IEEE GC Wkshps, 2015, pp. 1-6.
[56] H. Takanashi, Y. Sato, Y. Kaneko, S. Abe, and T. Yasuda, “A large air gap 3 kW wireless power transfer system for electric vehicles,” in Proc. IEEE ECCE, 2012, pp. 269-274.
[57] N. Oodachi, K. Ogawa, H. Kudo, H. Shoki, S. Obayashi, and T. Morooka, “Efficiency improvement of wireless power transfer via magnetic resonance using transmission coil array,” in Proc. IEEE APSURSI, 2011, pp. 1707-1710.
[58] M. Kiani and M. Ghovanloo, “The circuit theory behind coupled-mode magnetic resonance based wireless power transmission,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 9, pp. 2065-2074, Sep. 2012.
[59] K. Woronowicz, A. Safaee, and T. R. Dickson, “Single-phase zero reactive power wireless power transfer topologies based on boucherot bridge circuit concept,” IEEE Canadian Journal of Electrical and Computer Engineering, vol. 38, no. 4, pp. 323-337, Fall 2015.
[60] A. Desmoort, Z. De Gréve, P. Dular, C. Geuzaine, and O. Deblecker, “Surface impedance boundary condition with circuit coupling for the 3-D finite-element modeling of wireless power transfer,” IEEE Trans. Magn., vol. 53, no. 6, pp. 1-4, June 2017.
[61] J. Bito, S. Jeong, and M. M. Tentzeris, “A novel heuristic passive and active matching circuit design method for wireless power transfer to moving objects,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 4, pp. 1094-1102, Apr. 2017.
[62] UCC3895 Data sheet, Texas Instruments Inc., 2013.