簡易檢索 / 詳目顯示

研究生: 陳展敍
Chen, Chan-Hsu
論文名稱: 傳導鋰離子寡聚合物之合成鑑定與其混摻聚醚高分子於鋰電池固態電解質之應用
Synthesis and Characterization of Single Ion Conducting Oligomer and Its Blending with Polyether Applied for Solid Polymer Electrolyte of Lithium Batteries
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 鋰電池固態電解質鋰單離子寡聚物
外文關鍵詞: lithium batteries, solid-state electrolyte, single ion conducting oligomer
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成兩種寡聚物,分別為鋰單離子型寡聚物及非離子型寡聚物並作為固態電解質之塑化劑。本實驗利用三明治結構之固態電解質,由液態醚基電解質前驅物(Precursor)塗佈於聚氧乙烯離子傳導膜兩側後加以聚合,利用液態電解質前驅物解決固態電池界面接觸性不佳的問題,並透過合成之寡聚物提升電解質前驅物之離子傳導度。
    由熱重分析觀察到電解質前驅物中添加非/單離子寡聚物後,其裂解溫度從351°C上升至390°C說明兩者間彼此有作用力產生,使熱裂解溫度升高。電化學穩定電位窗達4.4V。在60°C下,藉由在液態醚基電解質前驅物中加入非單離子寡聚物和鋰單離子寡聚物其傳導度分別為6.88×10-5S/cm和8.80×10-5S/cm,並在充放電效能測試下,1C放電電容值分別為81mAh/g、110mAh/g,說明導入鋰單離子寡聚物有較佳的效能。在循環壽命以及循環阻抗測試中,導入非單離子寡聚物之庫倫效率不僅不佳就連阻抗值也隨著圈數持續增加,相較之下導入鋰單離子寡聚物不只能夠維持99.7%之庫倫效率,循環阻抗也在20圈後穩定不再增長,此外在循環壽命測試後觀察到鋰金屬表面較為平整,推測形成穩定SEI層。因為鋰金屬會自發性和寡聚物產生反應而形成鈍化層,在循環伏安法添加非單離子寡聚物在高電位下鈍化層會氧化產生不穩定電流,而添加單離子寡聚物所形成的鈍化層則較為穩定。並由FT-IR分析初始在表面所自發生成的鈍化層中組成成分多了鋰單離子官能基的訊號而讓鈍化層穩定,因此有較佳的循環壽命。混摻鋰單離子寡聚物除了提升電解質前驅物本身傳導度外,同時能夠濕潤多孔性正極材料提升電容,另一方面能夠在負極和鋰金屬自發生成native film保護層,增加循環壽命,提升電池整體之性能。

    In this study, we synthesize two types of oligomer containing single-ion and non-ionic, polyether-based, ion-conducting moiety as plasticizer for solid-state battery (SSB). The SSB features a sandwich-structured solid-state electrolyte of which liquid-like precursor is coated on the both sides of PEO membrane before polymerization. The precursor can effectively fill the void space, which reduces the interfacial resistance of SSB.
    To further improve the ionic conductivity of electrolytes, we introduce single-ion and polyether-based ion-conducting oligomer in the precursor of sandwich-structured electrolyte. The former exhibits higher ionic conductivity (8.8×10-5 S/cm)and better discharge capacity at 1C (110 mAh/g) than the latter at 60°C. Also, the former exhibits a good coulombic efficiency (> 99 %) during cycling, the cycle resistance remains unchanged after 20cycle, and the surface of lithium metal after cycling is smooth which are better than the latter one. Lithium metal reacts with oligomer leading a native film, spontaneously. From CV and FT-IR analysis, the single ion conducting oligomer exhibits stable native film which keeps electrochemical inert during charge/discharge process, while polyether-based oligomer does not. These results suggest the single ion segment acts as a key role to enhance the cyclic stability of the interface between lithium and electrolytes, which is important for next generation solid-state battery application.

    中文摘要.....Ⅰ Abstract.....Ⅱ 誌謝.....Ⅹ 總目錄.....ⅩI 表目錄.....ⅩIV 圖目錄.....ⅩⅤ 第一章 緒論.....1 1.1前言.....1 1.2鋰電池簡介.....2 1.3鋰電池工作原理.....3 1.4電解質.....5 1.5 研究動機.....6 第二章 文獻回顧.....7 2.1固態電解質(Solid Electrolytes, SEs).....7 2.2 固態高分子電解質(Solid Polymer Electrolytes, SPEs).....8 2.2.1常見高分子主體Poly(ethylene oxide),PEO.....9 2.2.2常見高分子主體Poly(acrylonitrile),PAN.....12 2.2.3常見高分子主體Poly(vinylidene fluoride), PVDF.....13 2.2.4常見高分子主體Poly(methyl methacrylate),PMMA.....13 2.3鋰單離子傳導高分子電解質(Single lithium-ion conducting SPEs).....13 2.3.1磺酸鹽於電池應用.....15 2.4 無機固態電解質(Inorganic Solid Electrolyte, ISEs).....16 第三章 實驗.....18 3.1實驗藥品與材料.....18 3.2儀器設備.....19 3.3樣品製備.....20 3.3.1 PEO固態電解質之製備.....20 3.3.2 牛磺酸鹽製換反應.....21 3.3.3 寡聚物之合成.....22 3.3.4 液態電解質前驅物及三明治結構電解質之製備.....23 3.3.5 磷酸鋰鐵正極製備.....25 3.3.6 鈕扣型電池組裝.....26 3.4實驗鑑定與分析.....27 3.4.1 傅立葉轉換紅外線光譜儀(FT-IR).....27 3.4.2 熱重分析儀(Thermogravimetric Analysis, TGA).....27 3.4.3 微差式掃描熱卡計(Differential Scanning Calorimetry, DSC).....28 3.4.4 電化學阻抗頻譜法(Electrochemical Impedance Spectroscope,EIS).....28 3.4.5 離子傳導度測量(Ionic Conductivity).....30 3.4.6 鋰離子遷移數(Lithium Ion Transference Number).....30 3.4.7 線性掃描伏安法(Linear Sweep Voltammetry, LSV).....31 3.4.8 掃描式電子顯微鏡(Scanning Electron Microscope, SEM).....32 3.4.9 穿透式電子顯微鏡(Transmission electron microscope, TEM).....32 3.4.10冷凍超薄切片機(Ultramicrotome).....33 3.4.11電池效能與循環壽命測試(C-rate and Cycle Life Test).....33 3.4.12對稱鋰金屬時效穩定性(Aging Stability).....33 3.4.13對稱鋰金屬循環充放測試(Plating-Stripping Test).....34 第四章 結果與討論.....35 4.1 掃描式電子顯微鏡.....36 4.2 寡聚物之鑑定.....37 4.2.1 傅立葉轉換紅外線光譜分析.....37 4.3 離子傳導度.....39 4.4 熱轉移性質分析.....42 4.5 熱重分析.....43 4.6 微相結構.....45 4.7 線性掃描伏安法.....47 4.8 鋰離子遷移數.....47 4.9 對稱鋰金屬電池時效穩定性分析.....51 4.10對稱鋰金屬電池循環穩定性測試.....55 4.11鋰金屬電池充放電效能測試.....58 4.12鋰金屬電池循環充放電測試.....61 4.13循環伏安法.....63 4.14鋰金屬電池充放電圈數之電化學阻抗分析.....64 4.15鋰金屬表面分析.....66 4.16鋰金屬Native film表面分析.....67 第五章 結論.....70 第六章 參考文獻.....71

    1. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
    2. Wen, K.; Liu, L.; Chen, S.; Zhang, S., A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator. RSC Advances 2018, 8 (23), 13034-13039.
    3. Di Pietro, B.; Patriarca, M.; Scrosati, B., On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries. Journal of Power Sources 1982, 8 (2), 289-299.
    4. Reddy, M. V.; Mauger, A.; Julien, C. M.; Paolella, A.; Zaghib, K., Brief History of Early Lithium-Battery Development. Materials (Basel) 2020, 13 (8).
    5. Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C., Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources 2012, 208, 210-224.
    6. Li, L.; Li, S.; Lu, Y., Suppression of dendritic lithium growth in lithium metal-based batteries. Chem Commun (Camb) 2018, 54 (50), 6648-6661.
    7. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188.
    8. Wu, X.; Pan, K.; Jia, M.; Ren, Y.; He, H.; Zhang, L.; Zhang, S., Electrolyte for lithium protection: From liquid to solid. Green Energy & Environment 2019, 4 (4), 360-374.
    9. Devaux, D.; Bouchet, R.; Glé, D.; Denoyel, R., Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups. Solid State Ionics 2012, 227, 119-127.
    10. Li, Z.; Yao, Q.; Zhang, Q.; Zhao, Y.; Gao, D.; Li, S.; Xu, S., Creating ionic channels in single-ion conducting solid polymer electrolyte by manipulating phase separation structure. Journal of Materials Chemistry A 2018, 6 (48), 24848-24859.
    11. Inceoglu, S.; Rojas, A. A.; Devaux, D.; Chen, X. C.; Stone, G. M.; Balsara, N. P., Morphology–Conductivity Relationship of Single-Ion-Conducting Block Copolymer Electrolytes for Lithium Batteries. ACS Macro Letters 2014, 3 (6), 510-514.
    12. Lisowska-Oleksiak, A., The interface between lithium and poly (ethylene-oxide). Solid State Ionics 1999, 119 (1-4), 205-209.
    13. Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D., Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes. Progress in Polymer Science 2018, 81, 114-143.
    14. Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C.-W.; Maier, J.; Armand, M.; Chen, L., New horizons for inorganic solid state ion conductors. Energy & Environmental Science 2018, 11 (8), 1945-1976.
    15. Safanama, D.; Adams, S., High efficiency aqueous and hybrid lithium-air batteries enabled by Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ceramic anode-protecting membranes. Journal of Power Sources 2017, 340, 294-301.
    16. Michael, M.; Jacob, M.; Prabaharan, S.; Radhakrishna, S., Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 1997, 98 (3-4), 167-174.
    17. Kim, Y.-T.; Smotkin, E. S., The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries. Solid State Ionics 2002, 149 (1-2), 29-37.
    18. He, R.; Kyu, T., Effect of Plasticization on Ionic Conductivity Enhancement in Relation to Glass Transition Temperature of Crosslinked Polymer Electrolyte Membranes. Macromolecules 2016, 49 (15), 5637-5648.
    19. Fan, L. Z.; Hu, Y. S.; Bhattacharyya, A. J.; Maier, J., Succinonitrile as a Versatile Additive for Polymer Electrolytes. Advanced Functional Materials 2007, 17 (15), 2800-2807.
    20. Xue, Z.; He, D.; Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
    21. Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G., Ionic conductivity in crystalline polymer electrolytes. Nature 2001, 412 (6846), 520-523.
    22. Fenton, D., Complexes of alkali metal ions with poly (ethylene oxide). polymer 1973, 14, 589.
    23. Marcinek, M.; Syzdek, J.; Marczewski, M.; Piszcz, M.; Niedzicki, L.; Kalita, M.; Plewa-Marczewska, A.; Bitner, A.; Wieczorek, P.; Trzeciak, T.; Kasprzyk, M.; P.Łężak; Zukowska, Z.; Zalewska, A.; Wieczorek, W., Electrolytes for Li-ion transport – Review. Solid State Ionics 2015, 276, 107-126.
    24. Zhang, Q.; Liu, K.; Ding, F.; Liu, X., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research 2017, 10 (12), 4139-4174.
    25. Takahashi, Y.; Tadokoro, H., Structural studies of polyethers,(-(CH2) mO-) n. X. Crystal structure of poly (ethylene oxide). Macromolecules 1973, 6 (5), 672-675.
    26. Fullerton-Shirey, S. K.; Maranas, J. K., Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 2009, 42 (6), 2142-2156.
    27. MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G., Structure of the polymer electrolyte poly (ethylene oxide) 6: LiAsF 6. Nature 1999, 398 (6730), 792-794.
    28. Brandell, D.; Liivat, A.; Kasemägi, H.; Aabloo, A.; Thomas, J. O., Molecular dynamics simulation of the LiPF6·PEO6structure. J. Mater. Chem. 2005, 15 (14), 1422-1428.
    29. Wright, P. V., Polymer electrolytes—the early days. Electrochimica Acta 1998, 43 (10-11), 1137-1143.
    30. Forsyth, M.; Sun, J.; Macfarlane, D. R.; Hill, A. J., Compositional dependence of free volume in PAN/LiCF3SO3 polymer‐in‐salt electrolytes and the effect on ionic conductivity. Journal of Polymer Science Part B: Polymer Physics 2000, 38 (2), 341-350.
    31. Angell, C.; Liu, C.; Sanchez, E., Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 1993, 362 (6416), 137-139.
    32. Kido, R.; Ueno, K.; Iwata, K.; Kitazawa, Y.; Imaizumi, S.; Mandai, T.; Dokko, K.; Watanabe, M., Li+ ion transport in polymer electrolytes based on a glyme-Li salt solvate ionic liquid. Electrochimica Acta 2015, 175, 5-12.
    33. Voigt, N.; van Wüllen, L., The mechanism of ionic transport in PAN-based solid polymer electrolytes. Solid State Ionics 2012, 208, 8-16.
    34. Gopalan, A.; Santhosh, P.; Manesh, K.; Nho, J.; Kim, S.; Hwang, C.; Lee, K., Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. Journal of Membrane Science 2008, 325 (2), 683-690.
    35. Ulaganathan, M.; Rajendran, S., Effect of different salts on PVAc/PVdF-co-HFP based polymer blend electrolytes. Journal of Applied Polymer Science 2010, n/a-n/a.
    36. Sun, X.-G.; Kerr, J. B., Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis (allylmalonato) borate. Macromolecules 2006, 39 (1), 362-372.
    37. Zhang, H.; Li, C.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z., Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 2017, 46 (3), 797-815.
    38. Bannister, D.; Davies, G.; Ward, I.; McIntyre, J., Ionic conductivities for poly (ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly (ethylene oxide) with lithium salts of anionic polymers. Polymer 1984, 25 (9), 1291-1296.
    39. Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Lascaud, S., Dendritic growth mechanisms in lithium/polymer cells. Journal of power sources 1999, 81, 925-929.
    40. Tsuchida, E.; Ohno, H.; Kobayashi, N.; Ishizaka, H., Poly [(ι-carboxy) oligo (oxyethylene) methacrylate] as a new type of polymeric solid electrolyte for alkali-metal ion transport. Macromolecules 1989, 22 (4), 1771-1775.
    41. Sedesheva, Y.; Ivanov, V.; Wozniak, A.; Yegorov, A., Proton-Exchange Membranes Based on Sulfonated Polymers. Oriental Journal of Chemistry 2016, 32 (5), 2283-2296.
    42. Haubold, H.-G.; Vad, T.; Jungbluth, H.; Hiller, P., Nano structure of NAFION: a SAXS study. Electrochimica Acta 2001, 46 (10-11), 1559-1563.
    43. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat Mater 2011, 10 (9), 682-6.
    44. Cheng, L.; Crumlin, E. J.; Chen, W.; Qiao, R.; Hou, H.; Franz Lux, S.; Zorba, V.; Russo, R.; Kostecki, R.; Liu, Z.; Persson, K.; Yang, W.; Cabana, J.; Richardson, T.; Chen, G.; Doeff, M., The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 2014, 16 (34), 18294-300.
    45. Balsara, N. P.; Newman, J., Relationship between Steady-State Current in Symmetric Cells and Transference Number of Electrolytes Comprising Univalent and Multivalent Ions. Journal of The Electrochemical Society 2015, 162 (14), A2720-A2722.
    46. Ma, Y.; Doyle, M.; Fuller, T. F.; Doeff, M. M.; De Jonghe, L. C.; Newman, J., The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution. Journal of the Electrochemical Society 1995, 142 (6), 1859.
    47. Pang, J.; Zhang, H.; Li, X.; Liu, B.; Jiang, Z., Poly(arylene ether)s with pendant sulfoalkoxy groups prepared by direct copolymerization method for proton exchange membranes. Journal of Power Sources 2008, 184 (1), 1-8.
    48. Chereddy, S.; Chinnam, P. R.; Chatare, V.; diLuzio, S. P.; Gobet, M. P.; Greenbaum, S. G.; Wunder, S. L., An alternative route to single ion conductivity using multi-ionic salts. Materials Horizons 2018, 5 (3), 461-473.
    49. Cao, C.; Li, Y.; Feng, Y.; Long, P.; An, H.; Qin, C.; Han, J.; Li, S.; Feng, W., A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. Journal of Materials Chemistry A 2017, 5 (43), 22519-22526.
    50. Lu, Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A., Stable cycling of lithium metal batteries using high transference number electrolytes. Advanced Energy Materials 2015, 5 (9), 1402073.
    51. Molinari, N.; Mailoa, J. P.; Kozinsky, B., Effect of Salt Concentration on Ion Clustering and Transport in Polymer Solid Electrolytes: A Molecular Dynamics Study of PEO–LiTFSI. Chemistry of Materials 2018, 30 (18), 6298-6306.
    52. Watanabe, M.; Nishimoto, A., Effects of network structures and incorporated salt species on electrochemical properties of polyether-based polymer electrolytes. Solid State Ionics 1995, 79, 306-312.
    53. Diddens, D.; Heuer, A., Simulation study of the lithium ion transport mechanism in ternary polymer electrolytes: the critical role of the segmental mobility. J Phys Chem B 2014, 118 (4), 1113-25.
    54. Pesko, D. M.; Sawhney, S.; Newman, J.; Balsara, N. P., Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes. Journal of The Electrochemical Society 2018, 165 (13), A3014-A3021.
    55. Zhou, B.; He, D.; Hu, J.; Ye, Y.; Peng, H.; Zhou, X.; Xie, X.; Xue, Z., A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. Journal of Materials Chemistry A 2018, 6 (25), 11725-11733.
    56. Pucić, I.; Jurkin, T., FTIR assessment of poly(ethylene oxide) irradiated in solid state, melt and aqeuous solution. Radiation Physics and Chemistry 2012, 81 (9), 1426-1429.

    無法下載圖示 校內:2025-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE