簡易檢索 / 詳目顯示

研究生: 郭昭霖
Kuo, Chao-Lin
論文名稱: 模糊滑動模式控制於磁浮球系統之研究
Study of Fuzzy Sliding-Mode Control for Magnetic Ball Levitation Systems
指導教授: 李祖聖
Li, Tzuu-Hseng S.
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 84
中文關鍵詞: 進化演算模糊滑動控制滑動模式控制模糊控制磁浮球系統
外文關鍵詞: fuzzy sliding-mode control, sliding-mode control, fuzzy logic control, magnetic ball levitation system, evolutionary programming
相關次數: 點閱:205下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對磁浮球系統,提出動態模糊滑動模式控制和基於進化演算法之模糊滑動模式控制之架構與設計方法。首先,引用殊異擾動學之觀念建立非線性磁浮球系統數學模型,並配合實驗量測資料與獲得該系統之參數。其次,針對所獲得之磁浮球系統,利用口語化的方式和滑動模式來設計,傳統的滑動模式和模糊滑動模式設計控制器。接著,本論文提出動態因子模糊滑動模式控制和基於進化演算法則之模糊滑動模式控制,並應用在所建立的磁浮球系統上。在動態因子模糊滑動模式控制方面,其動態因子改變方式,係運用控制系統所能提供最大能量限制和已知的平衡點能量,針對模糊滑動控制器輸出尺度因子做即時的調整。在基於進化演算法則之模糊滑動模式控制方面,乃採用進化演算法將模糊滑動控制器之輸入和輸出尺度因子予以最佳化,並根據李亞普諾夫定理分析其穩定性。最後,本論文所提出磁浮球系統之設計法則,經電腦模擬驗證並與傳統控制法則在IAE、ISE及ISV等三方面相比較,均有更佳的性能。

    In this dissertation, structures and design methodologies of the dynamic fuzzy sliding-mode control (FSMC) and an evolutionary programming (EP) based FSMC for magnetic ball levitation system are presented. Firstly, the nonlinear dynamic model of the magnetic ball levitation system is examined by using a singular perturbation method. The parameters in the dynamic model are determined by the experimental data. Secondly, the design schemes of traditional sliding-mode control (SMC) and FSMC for the magnetic ball levitation system are addressed by using the linguistic representation and control rules according to the sliding-mode concept. Finally, we present the dynamic FSMC and EP-based FSMC for the magnetic ball levitation system. In the dynamic FSMC, the scaling factor of the output variable for FSMC is tuned by the maximal energy of the system and by the equivalent control. In the EP-based FSMC, the EP is utilized to find the global optimization scaling factors of the input and output variables for the FSMC. The global asymptotic stability of the EP-based FSMC is confirmed by the Lyapunov stability theory. Computer simulations demonstrate that all the proposed control strategies are effective and can provide much better performance in comparison with traditional control schemes on the integral absolute-error (IAE), integral square-error (ISE), and integral square-voltage (ISV) points of view.

    中文摘要 I Abstract II Acknowledgment IV Contents V List of Acronyms VII List of Figures VIII List of Tables X Chapter 1 Introduction 1 1.1 Preliminary 1 1.2 Outline of the Dissertation 4 Chapter 2 Dynamic Model of the Magnetic Ball Levitation System 6 2.1 Electromagnetic Force Analysis 6 2.2 Dynamic Model of the Magnetic Ball Levitation System 12 2.3 States-Space Model of the Magnetic Ball Levitation System 17 Chapter 3 Application of Sliding-Mode Control and Fuzzy Sliding-Mode Control in the Magnetic Ball Levitation System 21 3.1 Introduction to Sliding-Mode Control 22 3.2 Applications of the Sliding-Mode Control in the Magnetic Ball Levitation System 25 3.3 Fuzzy Logic Control 27 3.4 Design of Fuzzy Sliding-Mode Control for a Magnetic Ball Levitation System 29 3.5 Simulations and Results 33 3.5.1 Set-point control 34 3.5.2 Sinusoidal trajectory tracking control 34 3.5.3 Uncertainty in ball mass 35 3.6 Summary 36 Chapter 4 Design of Dynamic Fuzzy Sliding-Mode Control in the Magnetic Ball Levitation System 41 4.1 DFSMC Methodology 42 4.2 DFSMC Design for a Magnetic Ball Levitation System 47 4.3 Simulations and Results 49 4.3.1 Set-point control 49 4.3.2 Sinusoidal trajectory tracking control 50 4.3.3 Uncertainty in ball mass 51 4.4 Experiments 56 4.5 Summary 58 Chapter 5 EP-Based Fuzzy Sliding-Mode Control in the Magnetic Ball Levitation System 59 5.1 Design of EP-Based FSMC for a Magnetic Ball Levitation System 60 5.2 Simulations and Results 67 5.2.1 Sinusoidal trajectory tracking control 67 5.2.2 Uncertainty in ball mass 70 5.3 Summary 70 Chapter 6 Conclusions and Future Study 73 6.1 Conclusions 73 6.2 Future Study 77 References 78

    [1] E. Baily and A. Arapostathis, “Simple sliding mode condition scheme applied to robot manipulator,” International Journal of Control, vol. 45, pp. 1197-1209, 1987.
    [2] P. B. Brazil, Machine learning, Proc. European Conf. on Machine Learning, Springer, New York, USA, 1993.
    [3] T. Bäck, Evolutionary algorithms in the theory and practice, New York, Oxford Univ. press, 1997.
    [4] T. Bäck and H. P. Schwefel, “An overview of evolutionary algorithm for parameter optimization,” Evolutionary Computation, vol. 1, pp. 1-23, 1993.
    [5] T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary computation: comments on the history and current state,” IEEE Transactions on Evolutionary Computation, vol. 1, pp. 3-17, 1997.
    [6] Y. J. Cao, “Eigenvalue optimisation problems via evolutionary programming,” Electronics Letters, vol. 33, pp. 642-643, 1997.
    [7] W.-D. Chang and J.-J Yan, “Optimum setting of PID controllers based on using evolutionary programming algorithm,” Journal of Chinese Institute of Engineers, vol. 27, pp. 439-442, 2004.
    [8] C.-L. Chen, “Optimal design of fuzzy sliding-mode control: a comparative study,” Fuzzy Sets and Systems, vol. 93, pp. 37-48, 1998.
    [9] T.-T. Chen and T.-H. S. Li “Integrated fuzzy GA-based simplex sliding-mode control,” International Journal of Fuzzy Systems. vol. 2, pp. 267-277, 2000.
    [10] D. K. Cheng, Field and wave electromagnetics, Addison-Wesley Inc, New York, pp. 289-292, 1989.
    [11] R. A. Decarllo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear multivariable system: a tutorial,” Proc. of the IEEE, vol. 76, pp. 212-232, 1988.
    [12] Z. Doulgeri, “Sliding regime of a nonlinear robust controller for robot manipulators,” IEE Proc. Control Theory & Applications, vol. 146, pp.493-498, 1999.
    [13] C. Edwards and S. K. Spurgeon, Sliding mode control: theory and applications, London: Taylor & Francis, 1998.
    [14] M. E. Elghezawi, A. S. I. Zinober, and S. A. Billings, “Analysis and design of variable structure systems using a geometric approach,” International Journal of Control, vol. 39, pp. 657-671, 1983.
    [15] A. F. Filippov, Differential equation with discontinuous right sides, Kluwer Academic Publishers, Dordercht, Boston, London, 1988.
    [16] D. B. Fogel, Evolutionary computation: toward a new philosophy of machine intelligence, New York, John Wiley and Sons, 1995.
    [17] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial intelligence through simulated evolution, New York, Wiley, 1996.
    [18] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in multiobjective optimization,” Evolutionary Computation, vol. 3, pp. 1-16, 1995.
    [19] C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part I: A unified formulation,” IEEE Transactions System, Man, Cybern, vol. 28, pp. 26-37, Jan. 1998.
    [20] G. F. Franklin, J. D. Powell, and A. Emami-Nasini, Feedback control of dynamics system, 2nd. Ed., Addition-Wesley, Reading MA, 1991.
    [21] M. Fujita, K. Hatake, and F. Matsumura, “Loop shaping based robust control of a magnetic bearing,” IEEE Control System Magazine, vol. 13, pp. 57-65, 1993.
    [22] K. Furuta, “Sliding mode control for discrete system,” Systems & Control letters, pp. 145-152, 1990.
    [23] M. J. Goodyer, R. I. Henderson, and M. Judd, “The measurement of magnus force and moment using a magnetically suspended wind tunnel model,” IEEE Transactions on Magnetic, vol. 11, pp. 1514-1516, 1975.
    [24] M. M. Gupta and T. Yamakawa, Fuzzy computing theory hardware and applications, Netherlands, 1991.
    [25] S. R. Habibi and R. J. Richards, “Sliding mode control of an electrically powered industrial robot,” IEE Proc. Control Theory & Applications, vol. 139, pp. 207-225, 1992.
    [26] E. H. Hajjaji and M. Ouladsine, “Modeling and nonlinear control of magnetic levitation system,” IEEE Transactions on Industrial Electronics, vol. 48, pp. 831-838, 2001.
    [27] K. Hirota, Industrial applications of fuzzy technology, South Sea Int. Pre. Ltd., 1993.
    [28] J. Y. Hung, “Magnetic bearing control using fuzzy logic,” IEEE Transactions on Industry Applications, vol. 31, pp. 1492-1497, 1995.
    [29] J. Y. Hung, “Nonlinear control of a magnetic levitation system,” in Proc. of the IEEE IECON’91, pp. 268-273, 1991.
    [30] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: a survey,” IEEE Transactions on Industrial Electronics, vol. 40, pp. 2-22, 1993.
    [31] J. Y. Hung and P. B. Stevenson, “An output feedback sliding mode speed regulator for DC drivers,” IEEE Transactions on Industrial Applications, vol. 3, pp.691-698, 1994.
    [32] W. A. Kilgore, “Comparison of digital controllers used in magnetic suspension and balance systems,” NASA Contractor Report 182087, 1990.
    [33] S. W. Kim and J. J. Lee, “Design of a fuzzy controller with fuzzy sliding surface,” Fuzzy Sets Systems, vol. 7, pp. 359-367, 1995.
    [34] P. V. Kokotovic, H. K. Khalil, and J. O’Reilly, Singular perturbations methods method in control: analysis and design, New York, Academic Press, 1986.
    [35] C. C. Kung and C. C. Liao, “Fuzzy-sliding mode control design for tracking control of nonlinear system,” in Proc. of the American Control Conference, Bartimora, Maryland, pp. 180-184, 1994.
    [36] B. C. Kuo, Automatic control systems, Prentice-Hall International, Inc., 1991.
    [37] Y.-P. Kuo and T.-H. S. Li, “A composite EP-based fuzzy controller for active suspension system,” International Journal of Fuzzy Systems, vol. 2, pp.182-190, 2000.
    [38] C. C. Lee, “Fuzzy in control systems: fuzzy logic controller-part I & II,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, pp. 404-435, 1990.
    [39] J.-H. Li and T.-H. S. Li, “Multiloop control of thyristor-driven magnetic levitation system,” Mechatronics, vol. 5, pp. 469-481, 1995.
    [40] J.-H. Li, T.-H. S. Li, and T.-H. Ou, “Design and implementation of fuzzy sliding-mode controller for a wedge balancing system,” Journal of Intelligent Robotic Systems, vol. 37, pp. 285-306, 2003.
    [41] T.-H. S. Li and J.-S. Chiou, “A new D-stability criterion of multiparameter singularly perturbed discrete systems,” IEEE Transactions on Circuits System I, vol. 49, pp. 1226-1230, 2002.
    [42] T.-H. S. Li and M.-Y. Shieh, “Switching-type fuzzy sliding mode control of a cart-pole system,” Mechatronics, vol. 10, pp. 91-109, 2000.
    [43] T.-H. S. Li and Y.-Y. Sun, “On model matching control to unmodeled high frequency dynamics,” in Proc. of 1989 ACC, Pittsburgh, pp. 1301-1303, 1989.
    [44] C. E. Lin and H. L. Jou, “Force model identification for magnetic suspension system via magnetic field measurement,” IEEE Transactions on Instrument and Measurement, vol. 42, pp. 767-771, 1993.
    [45] C. E. Lin and Y.-R. Sheu, “A hybrid control approach for large-gap magnetic suspension system,” Journal of Control Systems and Technology, vol. 2, pp. 1-9, 1994.
    [46] C.-M. Lin and J.-F. Shiu, “Adaptive fuzzy sliding-mode control for motor-toggle servomechanism,” in Proc. of IEEE Int. Conf. on Control Applications Anchorage, Alaska, USA, pp. 25-27, 2000.
    [47] L.-C. Lin and T.-B. Gau, “Feedback linearization and fuzzy control for conical magnetic bearings,” IEEE Transactions on Control Systems Technology, vol. 5, pp. 471-426, 1997.
    [48] J. C. Lo and Y. H. Kuo, “A sliding-mode approach of fuzzy control design,” IEEE Transactions on Control Systems Technology, vol. 4, pp. 141-151, 1996.
    [49] Y.-S. Lu and J.-S. Chen, “A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems,” IEEE Transactions on Industrial Electronics, vol. 41, pp. 492-552, 1994.
    [50] Z. Michalewicz, “A hierarchy of evolution programs: an experimental study,” Evolutionary Computation, vol. 1, pp. 51-76, 1993.
    [51] Z. Michalewicz, Genetic algorithms + data structure = evolution programs, Springer, Berlin, 1996.
    [52] Z. Michalewicz, G. Nazhiyath, and M. Michalewicz, “A note on usefulness of geometrical crossover for numerical optimization problems”, in Proc. of 5th Annu. Conf. on Evolutionary programming, Cambrige, MA: The MIT Press, pp. 305-312, 1996.
    [53] J. O’Reilly, “Robustness of linear feedback control systems to unmodeled high-frequency dynamics,” International Journal of Control, vol. 4, pp. 1077-1088, 1986.
    [54] P. Palm, “Robust control by fuzzy sliding mode,” Automatica. vol. 30, pp. 1429-1437, 1994.
    [55] R. Palm, “Sliding mode fuzzy control,” in Proc. of IEEE Int. Conf. on Fuzzy Systems, San Diego, California, pp. 519-526, 1992.
    [56] R. Palm and D. Driankov, “Stabilility of fuzzy gain schedulers: sliding-mode based analysis,” in Proc. of IEEE Int. Conf. Fuzzy Systems, pp. 177-183, 1997.
    [57] R. Palm and D. Driankov, “Design of fuzzy gain scheduler sliding mode control principles,” Fuzzy Sets and Systems, vol. 121, pp. 13-23, 2001.
    [58] K. H. Park, K. Y. Ahn, S. H. Kim, and Y. K. Kwak, “Wafer distribution system for a clean room using a novel magnetic suspension technique,” IEEE/ASME Transactions on Mechatronics, vol. 3, pp. 73-78, 1998.
    [59] G. G. Regatos, C. S. Tzafestas, and S. G. Tzafestas, “Mobile robotic motion control in partially unknown environments using a sliding-mode fuzzy-logic control,” Robotics and Autonomous Systems, vol. 33, pp. 1-11, 2000.
    [60] M. Schröder, “Automatic design of multidimensional controllers by means of an evolutionary algorithms,” Fuzzy Sets and Systems, vol. 89, pp. 321-333, 1997.
    [61] G. Schweitzer, “Mechatronics-a concept with examples in active magnetic bearings,” Mechatronics, vol. 4, pp. 65-74, 1994.
    [62] K. K. Shyu, F. J. Lin, H.-J. Lin, and B.-S. Juan, “Robust variable structure speed control for induction motor drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, pp 215-224, 1999.
    [63] J. F. Silva, “Sliding-mode control of boost-type unity-power-factor PWM rectifiers,” IEEE Transactions on Industrial Electronics, vol. 46, pp. 594-603, 1999.
    [64] I. Škrjanc and D. Matko, “Fuzzy predictive functional control in the state space domain,” Journal of Intelligent and Robotic Systems, vol. 31, pp. 289-297, 2001.
    [65] J.-J. E. Slotine and W. Li, Applied nonlinear control, Pearson Education Taiwan Ltd., 2005.
    [66] J.-J. E. Slotine, “Sliding controller design for nonlinear system,” International Journal of Control, vol. 40, pp. 421-434, 1984.
    [67] J. Suytino, F. H. Kobayashi, and Y. Dote, “Variable-structured robust controller by fuzzy logic for servomotors,” IEEE Transactions on Industrial Electronics, vol. 40, pp. 80-88, 1993.
    [68] K. C. Tan, M. R. Gong, and Y. Li, “Evolutionary liberalization in frequency domain,” Electronics Letters, vol. 32, pp. 74-76, 1996.
    [69] H. Temeltas, “A fuzzy sliding mode controller for induction motor position control,” in Proc. of IEEE ISIE ′98, vol. 1, pp. 110-115, 1998.
    [70] S. G. Tzafestas and G. G. Regatos, “Design and stability analysis of a new sliding-mode fuzzy logic controller of reduced complexity,” Machine Intelligence Robotic Control, vol. 1, pp. 27-41, 1999.
    [71] S. G. Tzafestas and G. G. Regatos, “A simple robust sliding-mode fuzzy-logic controller of the diagonal type,” Journal of Intelligent Robotic Systems, vol. 26, pp. 353-388, 1999.
    [72] V. I. Utkin, Slidingmodes and their application in variable structure system, Mir Publishers, Moscow (English Translation), 1978.
    [73] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automat Control, vol. 22, pp. 212-222, 1979.
    [74] V. I. Utkin, J. Guldner, and J. Shi, Sliding mode control in electromechanical system, Taylor & Francis, 1999.
    [75] E. M. Walsh, Energy conversion: electromechanical, direct, nuclear, New York: The Ronald Press Company, 1967.
    [76] T. H. Wong, “Design of a magnetic levitation control system-an undergrate project,” IEEE Transactions on Education, vol. 29, pp. 196-200, 1986.
    [77] S. Yamamura and H. Yamaguchi, “Electromagnetic levitation system by means of salient-pole type magnets coupled with laminated slotless rails,” IEEE Transactions on Vehicular Technology, vol. 39, pp. 83-87, 1990.
    [78] L. A. Zadeh, “Fuzzy logic,” IEEE Computer, vol. 21, pp. 83-93, 1988.
    [79] L. A. Zadeh, “Fuzzy sets,” Information Control, vol. 8, pp. 338-352, 1965.
    [80] L. A. Zadeh, “Outline of a new approach to analysis of complex system and decision process,” IEEE Transactions on Systems, Man and Cybernetics, vol. 3, pp. 28-44, 1973.
    [81] D. Q. Zhang and S. K. Panda, “Chattering-free and fast-response sliding mode controller,” IEE Proc. Control Theory & Applications, vol. 146, pp. 171-177, 1999.

    下載圖示 校內:2007-06-29公開
    校外:2007-06-29公開
    QR CODE