簡易檢索 / 詳目顯示

研究生: 林學溢
Lin, Hsueh-Yi
論文名稱: 丁腈電解液應用於染料敏化太陽能電池於低光之研究
Butyronitrile-Based Electrolyte for Dye-Sensitized Solar Cells under low light intensity
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 丁腈電解液添加物染料敏化太陽能電池室內光小分子酸
外文關鍵詞: Butyronitrile, Additives, Coadsorbents, Dye-sensitized solar cells, Dim-light
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將丁腈(butyronitrile,BN))作為 系統電解液的溶劑來取代傳統有毒且易揮發的溶劑乙腈(acetonitrile,ACN),丁腈的低毒性、不易揮發和黏滯性低的特性讓它適合應用在染料敏化太陽能電池(DSCs)的電解液中,而且它略高的施子數DN(Donor number)讓它比起其他溶劑之電解液系統在開路電壓上有更大優勢,使丁腈(BN)電解液系統勝過常見的3-甲氧基丙腈(3-methoxypropionitrile,MPN)電解液系統在室內光環境(200 lux)條件下的光伏表現。
    由於低光環境下光載子數量大幅減少,為了因應照光環境的改變,我們降低BN電解液中的I2碘濃度避免過多的載子阻礙傳輸,接著調整電解液中添加物TBP、GuSCN之濃度比例來改變DSCs中光電極TiO2之特性,如:(1)在熱力學上,平移TiO2之導帶能階位置;(2)在動力學上,減緩電解液中 與TiO2界面電子復合之速率。平衡兩種添加物對於DSCs的影響找出最佳的電解液組成後,在室內光200 lux的照光環境下搭配Z907(D907)染料光電轉換效率可以達到13.43%。
    以溶液的方式將小分子酸加入染料中以修飾TiO2的表面,小分子酸以化學吸附在表面可以抑制元件的暗電流並進一步提升元件之填充因子(Fill factor),改善DSCs開路電壓且能維持短路電流,以不同濃度之DINHOP(Dineohexyl phosphinic acid)與Z907(D907)染料共浸泡後,最終以0.3 mM之DINHOP共浸泡效果最好,大幅的改善元件之開路電壓表現。再將BN電解液系統應用在Dyesol、IPA、IPA/OCT(混和型漿料)三種不同顆粒大小及形狀漿料之工作電極,由研究結果顯示隨著漿料的不同其TiO2的導帶能階位置和載子的界面傳輸特性會跟著改變,三者之中以使用IPA為工作電極之元件有最好的光伏響應。綜合這些影響和優化後,發現BN電解液系統能夠勝過MPN電解液系統,在室內光200 lux的照光條件下分別達到光電轉換效率15.46%與14.21%。

    Recently, non-volatile solvents are introduced to prepare electrolyte for dye-sensitized solar cells (DSCs) because of their environmentally friendly property, among which butyronitrile (BN) solvents is a promising candidate for low-volatile electrolyte. Compared to the conventional solvent of acetonitrile (ACN), BN has relatively high boiling point. Although 3-methoxypropionitrile (MPN) and BN are non-volatile solvents, electrolytes based on BN shows more greater performance in mass transport in virtue of its low viscosity[1]. In the report, we employ BN-based electrolyte for DSCs to optimize including electrolyte composition, coadsorbents and TiO2 paste under dim-light luminance of 200 lux. Under low light intensities, the constituent of electrolyte has remarkable influence on the DSCs performance so we optimize the concentration of iodine and additives in the electrolyte to reach the best performance. The power conversion efficiency(PCE) of DSCs under dim-light intensity can be significantly improved when modulating the electrolyte composition and the surface property. Under dim-light illumination(200 lux), the power conversion efficiency of 15.46 % and 14.21 % of PCE can be achieved for devices using BN-based and MPN-based electrolyte with D907 dye, respectively.

    摘要 I Extended Abstract III 致謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1-1 太陽能電池的發展與演進過程 1 1-2 各世代太陽能電池之原理 3 1-2-1 第一代-矽太陽能電池 3 1-2-2 第二代-薄膜太陽能電池 4 1-2-3 第三代-有機太陽能電池 4 1-3 電解液傳輸原理 7 1-4 空氣質量(Air mass)對太陽光的影響 8 1-5 研究動機 9 1-5-1 穩定性 9 1-5-2 不同電解液溶劑的選擇 10 1-5-3 室內光環境下的研究 12 第二章 文獻回顧 14 2-1染料敏化太陽能電池發展 14 2-2液態電解液發展 19 2-2-1 有機極性溶劑 19 2-2-2 添加物 24 2-3小分子酸表面修飾 29 2-4染料敏化太陽能電池在室內光下發展 34 第三章 元件製備及實驗儀器原理 38 3-1 實驗儀器與藥品 38 3-1-1 實驗儀器 38 3-1-2 實驗藥品 39 3-2 元件製作流程 40 3-2-1基板製備 (FTO device) 40 3-2-2對電極製備 41 3-2-3工作電極染料浸泡 42 3-2-4染料敏化太陽能電池元件組裝 42 3-3實驗量測與分析儀器工作原理 44 3-3-1表面輪廓儀 (α-step) 44 3-3-2 吸收分光光譜儀 (Ultraviolet-visible spectrophotometer,UV-Vis) 44 3-3-3 暫態分析量測(Transient) 45 3-3-4 電化學交流阻抗分析儀(Electrochemical impedance spectroscopy,EIS) 46 3-3-5 太陽光模擬器之I-V 量測 49 3-3-6 IPCE量測 51 第四章 結果與討論 53 4-1 染料與燈源光譜匹配分析 53 4-2 電解液組成優化 54 4-2-1 氧化還原對濃度之影響 54 4-2-2 添加物(TBP、GuSCN)濃度之影響 57 4-3 TiO2表面之修飾 61 4-3-1 小分子酸之FTIR 61 4-3-2 小分子酸對DSCs之影響 63 4-4 比較不同TiO2漿料光電極之DSCs性能 67 4-5 MPN與BN電解液之DSCs性能比較 70 第五章 結論與未來發展 73 第六章 參考文獻 75

    [1] F. Sauvage, S. Chhor, A. Marchioro, J.-E. Moser, M. Graetzel, "Butyronitrile-based electrolyte for dye-sensitized solar cells," Journal of the American Chemical Society, 133 (2011) 13103-13109.
    [2] J.-L. Lan, T.-C. Wei, S.-P. Feng, C.-C. Wan, G. Cao, "Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities," The Journal of Physical Chemistry C, 116 (2012) 25727-25733.
    [3] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, "Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, 115 (1993) 6382-6390.
    [4] G. Boschloo, L. Häggman, A. Hagfeldt, "Quantification of the effect of 4-tert-butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells," The Journal of Physical Chemistry B, 110 (2006) 13144-13150.
    [5] A. Fukui, R. Komiya, R. Yamanaka, A. Islam, L. Han, "Effect of a redox electrolyte in mixed solvents on the photovoltaic performance of a dye-sensitized solar cell," Solar Energy Materials and Solar Cells, 90 (2006) 649-658.
    [6] A.E. Becquerel," Comptes Rendus, 9 (1839) 561-567.
    [7] D.M. Chapin, C. Fuller, G. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, 25 (1954) 676-677.
    [8] A.W. Blakers, A. Wang, A.M. Milne, J. Zhao, M.A. Green, "22.8% efficient silicon solar cell," Applied Physics Letters, 55 (1989) 1363-1365.
    [9] D.E. Carlson, C.R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, 28 (1976) 671-673.
    [10] P. Verlinden, W. Deng, X. Zhang, Y. Yang, J. Xu, Y. Shu, P. Quan, J. Sheng, S. Zhang, J. Bao, "Strategy, development and mass production of high-efficiency crystalline Si PV modules," Paper 4sMoO, 1 (2014).
    [11] "First Solar Press Release," First Solar Press Release, (2014).
    [12] B. Kayes, H. Nie, R. Twist, S. Spruytte, F. Reinhardt, I. Kizilyalli, G. Higashi, "Presented in part at the 37th IEEE Photovoltaic Specialists Conference," Seattle, WA, (2011).
    [13] M. Osborne, "Hanergy’s Solibro has 20.5% CIGS solar cell verified by NREL," 2014.
    [14] D.L.L. P.T. Chiu, R.L. Woo, S. Singer, W.D. Hong, A. Zakaria, J.C. Boisvert, S. Mesropian, R.R. King, N.H. Karam. ," Proceedings of the 40th IEEE Photovoltaic Specialists Conference, (2014).
    [15] T.A. K. Sasaki, K. Nakaido, N. Takahashi, R. Onitsuka, T. Takamoto.," Proceedings of 9th International Conference on Concentrating Photovoltaics Systems, Miyazaki, 1556 (2013) 22.
    [16] "Press Release," Soetic, (2014).
    [17] B. O’regan, M. Grfitzeli, "A low-cost, high-efficiency solar cell based on dye-sensitized," nature, 353 (1991) 737-740.
    [18] M. Grätzel, "Photoelectrochemical cells," Nature, 414 (2001) 338-344.
    [19] A.F. R. Komiya, N. Murofushi, N. Koide, R. Yamanaka, H. Katayama," Proceedings of the 21st International Photovoltaic Science and Engineering Conference, Fukuoka, (2011).
    [20] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical communications, 51 (2015) 15894-15897.
    [21] M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4 (2003) 145-153.
    [22] P. Peumans, S. Forrest, "Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells," Applied Physics Letters, 79 (2001) 126-128.
    [23] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, 131 (2009) 6050-6051.
    [24] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, 2 (2012) 591.
    [25] B.D. Ghosh, K.F. Lott, J.E. Ritchie, "Conductivity Dependence of PEG Content in an Anhydrous Proton Conducting Sol− Gel Electrolyte," Chemistry of materials, 17 (2005) 661-669.
    [26] " Reference Solar Spectral Irradiance: Air Mass 1.5, American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for BR Photovoltaic Performance Evaluation.
    [27] Z. Kebede, S.-E. Lindquist, "Donor–acceptor interaction between non-aqueous solvents and I 2 to generate I− 3, and its implication in dye sensitized solar cells," Solar Energy Materials and Solar Cells, 57 (1999) 259-275.
    [28] V. Gutmann," Electrochim Acta, (1976) 661.
    [29] K.-M. Lee, V. Suryanarayanan, K.-C. Ho, "Influences of different TiO 2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells," Journal of Power Sources, 188 (2009) 635-641.
    [30] A. Hauch, A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, 46 (2001) 3457-3466.
    [31] A. Mirza," Communication Systems,2016 10th International Symposium on IEEE, (2016).
    [32] N. Sridhar, D. Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting: comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking," 26th European photovoltaic solar energy conference and exhibition, 2011, pp. 232-236.
    [33] H.W. Vogel, Lehrbuch der photographie, R. Oppenheim, 1878.
    [34] W.A. H. Meier " Berichte Der Bunsen-Gesellschaft Fur Physikalische Chemie, 69 (1965) 9-10.
    [35] G. H," Journal of Physical Chemistry, (1971) 562.
    [36] R. Memming, H. Tribhe," Photochemistry and Photobiology, (1972) 243.
    [37] M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells," Journal of the American Chemical Society, 123 (2001) 1613-1624.
    [38] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, "Dye-sensitized solar cells with conversion efficiency of 11.1%," Japanese Journal of Applied Physics, 45 (2006) L638.
    [39] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, "Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio) thiophene conjugated bipyridine," The Journal of Physical Chemistry C, 113 (2009) 6290-6297.
    [40] M. Wang, C. Grätzel, S.M. Zakeeruddin, M. Grätzel, "Recent developments in redox electrolytes for dye-sensitized solar cells," Energy & Environmental Science, 5 (2012) 9394-9405.
    [41] C. Teng, X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt, L. Sun, "Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 V based on Br−/Br3− electrolytes," Organic letters, 11 (2009) 5542-5545.
    [42] T. Daeneke, T.-H. Kwon, A.B. Holmes, N.W. Duffy, U. Bach, L. Spiccia, "High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes," Nature chemistry, 3 (2011) 211-215.
    [43] S. Hattori, Y. Wada, S. Yanagida, S. Fukuzumi, "Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells," Journal of the American Chemical Society, 127 (2005) 9648-9654.
    [44] Y. Bai, Q. Yu, N. Cai, Y. Wang, M. Zhang, P. Wang, "High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle," Chemical Communications, 47 (2011) 4376-4378.
    [45] M. Freitag, F. Giordano, W. Yang, M. Pazoki, Y. Hao, B. Zietz, M. Grätzel, A. Hagfeldt, G. Boschloo, "Copper phenanthroline as a fast and high-performance redox mediator for dye-sensitized solar cells," The Journal of Physical Chemistry C, 120 (2016) 9595-9603.
    [46] Y. Saygili, M. Söderberg, N. Pellet, F. Giordano, Y. Cao, A.B. Muñoz-García, S.M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo, "Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage," Journal of the American Chemical Society, 138 (2016) 15087-15096.
    [47] H.-S. Kim, S.-B. Ko, I.-H. Jang, N.-G. Park, "Improvement of mass transport of the [Co (bpy) 3] II/III redox couple by controlling nanostructure of TiO 2 films in dye-sensitized solar cells," Chemical Communications, 47 (2011) 12637-12639.
    [48] S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, "Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells," Journal of the American Chemical Society, 132 (2010) 16714-16724.
    [49] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Grätzel, "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency," science, 334 (2011) 629-634.
    [50] M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, H. Yanagida, "Dye sensitization and surface structures of semiconductor electrodes," Industrial & Engineering Chemistry Product Research and Development, 19 (1980) 415-421.
    [51] C. Law, S.C. Pathirana, X. Li, A.Y. Anderson, P.R. Barnes, A. Listorti, T.H. Ghaddar, "Water‐Based Electrolytes for Dye‐Sensitized Solar Cells," Advanced Materials, 22 (2010) 4505-4509.
    [52] A. Kay, M. Grätzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder," Solar Energy Materials and Solar Cells, 44 (1996) 99-117.
    [53] J. Koryta, J. Dvorak, L. Kavan," Wiley, Chicester, Editon edn,, (1993) 330-335.
    [54] N. Kato, Y. Takeda, K. Higuchi, A. Takeichi, E. Sudo, H. Tanaka, T. Motohiro, T. Sano, T. Toyoda, "Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition," Solar Energy Materials and Solar Cells, 93 (2009) 893-897.
    [55] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, "Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO 2 solar cells," Solar Energy Materials and Solar Cells, 70 (2001) 151-161.
    [56] J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang, "Progress on the electrolytes for dye-sensitized solar cells," Pure and Applied Chemistry, 80 (2008) 2241-2258.
    [57] S. Huang, G. Schlichthörl, A. Nozik, M. Grätzel, A. Frank, "Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells," The Journal of Physical Chemistry B, 101 (1997) 2576-2582.
    [58] G. Schlichthörl, S. Huang, J. Sprague, A. Frank, "Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy," The Journal of Physical Chemistry B, 101 (1997) 8141-8155.
    [59] Y. Liu, A. Hagfeldt, X.-R. Xiao, S.-E. Lindquist, "Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO 2 solar cell," Solar Energy Materials and Solar Cells, 55 (1998) 267-281.
    [60] D.F. Watson, G.J. Meyer, "Cation effects in nanocrystalline solar cells," Coordination Chemistry Reviews, 248 (2004) 1391-1406.
    [61] C.A. Kelly, F. Farzad, D.W. Thompson, J.M. Stipkala, G.J. Meyer, "Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2," Langmuir, 15 (1999) 7047-7054.
    [62] N. Kopidakis, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, "Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells," The Journal of Physical Chemistry B, 107 (2003) 11307-11315.
    [63] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 3-14.
    [64] N. Kopidakis, N.R. Neale, A.J. Frank, "Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation," The Journal of Physical Chemistry B, 110 (2006) 12485-12489.
    [65] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, "Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability," The Journal of Physical Chemistry C, 113 (2009) 21779-21783.
    [66] Z. Yu, M. Gorlov, G. Boschloo, L. Kloo, "Synergistic effect of N-methylbenzimidazole and guanidinium thiocyanate on the performance of dye-sensitized solar cells based on ionic liquid electrolytes," The Journal of Physical Chemistry C, 114 (2010) 22330-22337.
    [67] S.A. Haque, E. Palomares, B.M. Cho, A.N. Green, N. Hirata, D.R. Klug, J.R. Durrant, "Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy," Journal of the American Chemical Society, 127 (2005) 3456-3462.
    [68] Z. Zhang, S.M. Zakeeruddin, B.C. O'Regan, R. Humphry-Baker, M. Grätzel, "Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells," The Journal of Physical Chemistry B, 109 (2005) 21818-21824.
    [69] Z. Zhang, N. Evans, S.M. Zakeeruddin, R. Humphry-Baker, M. Grätzel, "Effects of ω-guanidinoalkyl acids as coadsorbents in dye-sensitized solar cells," The Journal of Physical Chemistry C, 111 (2007) 398-403.
    [70] M. Wang, X. Li, H. Lin, P. Pechy, S.M. Zakeeruddin, M. Grätzel, "Passivation of nanocrystalline TiO 2 junctions by surface adsorbed phosphinate amphiphiles enhances the photovoltaic performance of dye sensitized solar cells," Dalton Transactions, (2009) 10015-10020.
    [71] T. Marinado, M. Hahlin, X. Jiang, M. Quintana, E.M. Johansson, E. Gabrielsson, S. Plogmaker, D.P. Hagberg, G. Boschloo, S.M. Zakeeruddin, "Surface molecular quantification and photoelectrochemical characterization of mixed organic dye and coadsorbent layers on TiO2 for dye-sensitized solar cells," The Journal of Physical Chemistry C, 114 (2010) 11903-11910.
    [72] A.G. Kontos, T. Stergiopoulos, V. Likodimos, D. Milliken, H. Desilvesto, G. Tulloch, P. Falaras, "Long-term thermal stability of liquid dye solar cells," The Journal of Physical Chemistry C, 117 (2013) 8636-8646.
    [73] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S.M. Zakeeruddin, J.-E. Moser, M. Grätzel, "Dye-sensitized solar cells for efficient power generation under ambient lighting," Nature Photonics, (2017).
    [74] S. Sze, K. Ng, "Physics of semiconductor devices. 2007, Hoboken," NJ: Wiley-Interscience.
    [75] 陳韋先, "暫態光電壓 /光電流量測技術應用於染料敏化太陽能電池
    之研究," (2015).
    [76] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, "Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy," Solar Energy Materials and Solar Cells, 87 (2005) 117-131.
    [77] G.P. Smestad, Optoelectronics of solar cells, SPIE press, 2002.
    [78] Y. Tao, A. Rohatgi, High‐Efficiency Front Junction n‐Type Crystalline Silicon Solar Cells, Nanostructured Solar Cells, InTech, 2017.
    [79] Y. Tao, Screen‐Printed Front Junction n‐Type Silicon Solar Cells, Printed Electronics-Current Trends and Applications, InTech, 2016.
    [80] X.-Z. Guo, Y.-H. Luo, Y.-D. Zhang, X.-C. Huang, D.-M. Li, Q.-B. Meng, "Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup," Review of scientific instruments, 81 (2010) 103106.
    [81] S. Zakeeruddin, M.K. Nazeeruddin, R. Humphry-Baker, P. Pechy, P. Quagliotto, C. Barolo, G. Viscardi, M. Grätzel, "Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films," Langmuir, 18 (2002) 952-954.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE