| 研究生: |
巫善睿 Wu, Sam-Ray |
|---|---|
| 論文名稱: |
汽車室內空調之熱舒適性分析 Analysis of thermal comfort in vehicle air-conditioning system |
| 指導教授: |
張錦裕
none |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 共軛熱傳 、汽車空調 、紊流模式 |
| 外文關鍵詞: | thermal comfort, air-conditioning, conjugated heat transfer |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生活品質是現代人所追求的,在科技進步的今天,無論是食衣住行人們都期望得到舒適的環境,駕駛時也不例外,人們需要舒適的乘車空間,這也是業界近年來努力的方向。傳統上車廠針對車內環境的測試,都是利用實車實驗去模擬,然後針對實驗結果再對空調系統做調整,當然這是一項耗費時間與資源的工程。而近年來電腦模擬的崛起,使許多分析人員使用數值模擬的方式計算汽車室內空調系統與乘車員之熱舒適
度關係,進而討論乘車員最佳之熱舒適環境。
而車內環境之分析跟車內的空調系統與車外的外界環境影響息息相關,車內空調系統本文利用一套熱交換器的理論來估計車內出風口跟回風口之關係,車外環境本文採用實車實驗量取之邊界條件,此外另考慮 紊流模式(turbulent flow)與車殼之共軛熱傳,將以上條件導入STAR-CD套裝商業模擬軟體以求得車內溫度場與速度場之變化,並將數值結果由熱舒適指數PMV(Predicted Mean Vote)預測法來預估乘車員之熱舒適感受,並建立一套分析熱舒適度之軟體以利本文分析車內環境之舒
適性。
With the technology improving, the people have high quality of life. And people use car so frequently that they pay great attention to the air-conditioning, and thermal comfort of a passenger when buying a new car. So creating comfortable driving environment becomes an important ambition for automobile factory in last year. Traditionally, when factory design the air-conditioner system they usually get vehicle indoor information by experimental method, then they can regulate air-conditioner system according the experimental results. But actually the experimental method takes a lot of resources. With numerical technology great developing, many analyzer use numerical method to improve the passenger’s thermal comfort and understand the 3-D flow motion and the thermal behavior within vehicle. However, the indoor vehicles analysis correlated closely with the air conditioner and the outdoor environmental condition. In this steady, the air temperature relation between inlet and outlet vents calculated by NTU theoretical equations for heat exchanger, 3D unsteady tabulate model and conjugate heat transfer at the wall were regard as boundary conditions. Under those boundary conditions, we used numerical analysis software STAR-CD to calculate the air temperature and velocity distributions within vehicle. According the analysis results and PMV (Predicted Mean Vote) thermal comfort model, we can measure the passenger’s thermal comfort, and develop
software of thermal comfort analysis.
1. Atkinson, K. N., Drakulic, R., Heikal, M. R., Cowell, T. A., “Two-and- three-dimensional numerical models of flow and heat transfer over louver fin arrays in compact heat exchangers”, International Journal of
Heat and Mass Transfer 41 pp.4063-4080, 1998.
2. ASHRAE Standard, “Thermal Environmental Condition for Human
Occupancy”, American Society of Heating, Refrigerating, and Air- Conditioning Engineers, Inc., PP.55-81, 1982
3. ASHRAE, “Thermal Comfort”, ASHRAE Handbook-1997 Fundamentals, American Society of Heating, Refrigerating, and Air- Conditioning Engineers, Inc., Atlanta, PP. 8.1-8.28, 1982
4. Chen, Y. S., Kim, S. W., 1987, “Computation of Turbulent Flows Using
an Extended Turbulence losure Model”, NASA CR-179204.
5. Chen, Y.S., “Applications of a New Wall Function to Turblent Flow Computations”, AIAA 24th Aeropspace Sciences Meeting,1986
6. CFD-ACE(U), CFD Research Corporation, Albama, USA, 2003
7. Doherty, T.J. and Arens, E., “Evaluation of The Physiological Bases of Thermal Comfort Models”, ASHRAE Transactions, Part 1,PP.1371-1385,1988.
8. Davenport, C. J., “Correlations for Heat Transfer and Flow Friction Characteristics of Louvered fin”, Heat Transfer-Seattle, N. M. Farukhi,
editor, AICHE Symp., Ser. V-79, No 225, pp19-27, 1983.
9. Fanger, P.O., “Thermal Comfort – Analysis and Application in Environ-
ment Engineering”, Robert E. Krieger, Florida, 1982.
10. Fanger, P.O., “The New Comfort Equation for Indoor Air Quality”,
ASHRAE JOURNAL, Vol. 31,, PP.33-38 1989.
11. Fanger, P.O., “Thermal environment — Human requirements “, The Environmentalist, Volume 6, NO. 4, PP.275-278, 1986
12. Gnilinski. V.,”New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow”, Int. Chem. Eng., Vol.16,p359-368,1976
13. Gagge, A.P., Foblets and Berglund, L.G., “A Standard Predictive Index of Human Response to The Thermal Environment”, ASHRAE Transactions, 1986
14. Gagge, A.P., Gonzalez, R.R. and Nishi, Y., “Standard Effective Temperature”, CIB Commission W45-Symposium on thermal comfort and moderate heat stress, 1972
15. Gagge, R.R., Stolwijk J.A.J. and Nishi, Y., “An Effective scale Based on a Simple Model of Human Physiological Regulatory Response”, ASHRAE Transactions, PP.247-262, 1971
16. Han, T., “Three-dimensional Navier-Stokes Simulation for Passenger Compartment Cooling”, Int. J. of vehicle Design, Vol. 10, No. 2, PP.175-186, 1989.
17. Huang, L., and Han, T., “Validation of 3-D Passenger Compartment Hot Soak and Cool-Down Analysis for Virtual Thermal Comfort Engineering”, SAE Paper, 2002
18. Kang, J. and Park, S., “Development of Comfort Sensing System for
Human Environment”, Mechatronics, Vol. 8, PP.459-466, 1989.
19. Kang, J. and Park, S., “Integrated Comfort Sensing System on Indoor Climate”, Sensors, Vol. 82, PP.302-307, 2000.
20. Kataoka, T. and Nakamura, Y., “Prediction of Thermal Sensation Based on Simulation of Temperature Distribution in a Vehicle Cabin” Heat Transfer -Asian Research, 2001.
21. Kandlikar, S.G., ”An Imporoved Correlation for Predicting Two-Phase Flow Boiling Heat Transfer Coefficient in Horizontal and Vertical Tubes”, Heat Exchangers for Two-Phase Flow Applications, ASME, NEW YORK,1983
22. Rohles, F.H. and Nevins. R.G., “The Nature of Thermal Comfort for Sedentary”, ASHRAE Transactions, Vol.77, Part 1, PP.239-246, 1972.
23. Komoriya, T., “Prediction Method of Passenger’s Thermal Sensation by Numerical Simulation of Air Flow in an Automobile Passenger Compartment”, JSAE Review, Vol. 16, PP.315, 1995
24. Lee, S.-J. and Yoon, J.-H. “Temperature Field Measurement of Heated Ventilation Flow in a Vehicle Interior”, Int. J. of Vehicle Design, Vol. 19,
No. 2, PP.228-243, 1998.
25. Launder, B. E. and Spalding, A. D., 1972, Mathematical Models of Turbulence, pp. 90-100, Academic, London.
26 McCullough, E.A, Jones, B.W., and Juck, J., “A Comprehensive Data Base for Estimating Clothing Insulation”, ASHRAE Trans., Vol. 91, PP.29-47, 1984
27. “Moderate Thermal Environment – Determination of The PMV and PPD Indices and Specification of The Conditions for Thermal Comfort”, International Standard ISO 7730. , 1994
28. Nisson H.O., Holmer I. “Comfort Climate Evaluation with Thermal Manikin Methods and Computer Simulation Models”, Indoor Air,PP.28-37, 2003
29 Olesen, B.W., and Nielsen, R., “Thermal Insulation of Clothing Measured on a Movable Thermal Manikin and Human Subjects”, Research NO. 7206/00/914, IIIrd ECSE Programme in Ergonomics: Laboratory of Heating and Air Conditioning, Technical University of Denmark, Lyngby , 1983
30. Suga, K., Aoki, H., Shinagawa, T. “Numerical Analysis on Two- Dimensional Flow and Heat Transfer of Louvered Fins Using Overlaid Grids”, JSME International Journal Series II, Vol.33, No.1 pp.122-129,
1990.
31. Suga, K., Aoki, H., “Numerical Study on Heat Transfer and Pressure Drop in Multilouvered Fins”, ASME/JSME Thermal Engineering Proceedings,
Vol.4, pp.361-368, 1991.
32. STAR-CD, Command Manual, Version 3.15, Japen, 2001
33. Wan, J.W. and Kooi, J., “Influence of The Position of Supply and Exhaust Openings on Comfort in a Passenger Vehicle”, Int. J. of vehicle Design, Vol. 12, PP.588-597, 1991.
34. Webb, R. L., Trauger, P., “Flow Structure in The Louvered Fin Heat Exchanger Geometry”, Experimental Thermal and Fluid Science Vol.40, No3, PP.205-217, 1991.
35. Wang, C. C., Chang, Y, P., Chi, K. Y., “A Study of Non-Redirection Louver Fin-And-Tube Heat Exchanger”, Proc. Inst. Mech. Engrs. Vol.212 part C, pp.1-13, 1998.
36. Wang, C. C., Chi, K. Y., Chang, Y. J., “An Experimental Study of Heat Transfer and Friction Characteristics of Typical Louver Fin-And-Tube Heat Exchangers”, International Journal of Heat Mass Transfer Vol.41, pp.817-822, 1998.
37. Wang, T. S., Chen, Y. S., 1993, “Unified Navier-Stokes Flow Field and Performance Analysis of Liquid Rocket Engines”, AIAA Journal, Vol. 9, No. 5, pp. 678-685.