簡易檢索 / 詳目顯示

研究生: 劉彥
Liu, Yen
論文名稱: 高穩定性鈣鈦礦量子點於混合型雷射共振腔之研究
The research of stable perovskite quantum dots in hybrid cavity
指導教授: 周昱薰
Chou, Yu-Hsun
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 55
中文關鍵詞: 鈣鈦礦量子點分佈式布拉格反射鏡塔姆電漿子
外文關鍵詞: Perovskite quantum dots, Distributed Bragg reflector, Tamm plasmon
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機-無機鈣鈦礦(perovskite)因具有優異的光學性質及製程簡易的特點,在近年來被廣泛應用於各式光電元件的研究上。然而鈣鈦礦容易受到大氣中的水氧影響,造成表面分解而無法長時間於常態環境下存放,導致其商業化的應用遲遲無法被兌現。因此本論文使用包覆在金屬有機框架材料UiO-66當中的CsPbBr3鈣鈦礦量子點,提高鈣鈦礦的穩定性並進行驗證,最後將高品質的鈣鈦礦量子點作為雷射的增益介質使用,搭配共振腔製作元件並進行光致發光的量測。
    傳統光學共振腔受到光學繞射極限的影響,使雷射體積受限在半波長的大小而無法繼續縮小;若是藉由表面電漿子作為共振模態,有望突破繞射極限使雷射體積進一步縮小。表面電漿子是金屬受到電磁波的影響,導致表面的自由電子瞬間極化,這些電偶極在金屬表面集體振盪的行為稱之為表面電漿波。而塔姆電漿子是在金屬與週期性介電質界面觀察到的一種表面電漿波,相較於一般表面電漿子,塔姆電漿子不需要額外光學元件耦合,並且能夠同時容許TE以及TM模態的傳遞,因此在光學元件的應用上更有潛力。
    本論文使用包覆在金屬有機框架UiO-66當中的高穩定性CsPbBr3鈣鈦礦量子點作為雷射增益介質,參考垂直共振腔面射型雷射架構,並以塔姆電漿模態設計雷射共振腔,使用金薄膜和由TiO2與SiO2交替堆疊的分佈式布拉格反射鏡作為元件上、下層反射鏡,研究並觀察使用的鈣鈦礦量子點於共振腔中的特性,並嘗試能夠觀察到雷射輸出。

    In this research, we synthesized the CsPbBr3 perovskite quantum dots in metal-organic frameworks, UiO-66. The perovskite quantum dots remain the same photoluminescence intensity during the 25 weeks test. Proving our perovskite quantum dots can resist the oxygen and moisture in the normal environment. In the temperature-dependent photoluminescence measurement, perovskite quantum dots also showed the stability.
    Then we designed our hybrid cavity by utilizing Tamm plasmon mode. Through spin coated the perovskite quantum dots on the distributed Bragg reflector, and deposit gold thin film by E-beam evaporator to complete the process of device. Finally, we observed the laser cavity modes and the characteristic of our hybrid laser cavity by photoluminescence measurement.

    摘要 I 致謝 V 目錄 VII 圖目錄 X 表目錄 XII 第一章 序論 1 1-1 前言 1 1-2 研究目的與動機 2 1-3 論文大綱 3 第二章 實驗原理 4 2-1 光與物質的交互作用 4 2-1-1 吸收(Absorption) 4 2-1-2 自發輻射(Spontaneous emission) 5 2-1-3 受激輻射(Stimulated emission) 5 2-2 雷射 6 2-3 雷射條件 7 2-3-1 激發源(Pumping source) 8 2-3-2 增益介質(Gain medium) 8 2-3-3 共振腔(Optical cavity) 10 2-4 雷射的特性及性質 11 2-4-1 單色性(Monochromaticity) 12 2-4-2 指向性(Directionality) 12 2-4-3 同調性(Coherence) 13 2-5 半導體雷射 13 2-5-1 垂直共振腔面射型雷射(Vertical cavity surface emitting laser) 14 2-5-2 分佈式布拉格反射鏡(Distributed Bragg reflector) 15 2-6 表面電漿 16 2-6-1 表面電漿子(Surface plasmon) 17 2-7 塔姆電漿子(Tamm plasmon) 21 2-8 鈣鈦礦 23 2-8-1 鈣鈦礦量子點(Perovskite quantum dots) 25 2-8-2 模板輔助合成法(Template-assisted methods) 26 2-8-3 金屬有機框架材料(Metal-organic Frameworks) 27 第三章 實驗方法與步驟 29 3-1 實驗設計 29 3-2 實驗步驟 30 3-2-1 合成鈣鈦礦量子點 30 3-2-2 旋塗CsPbBr3@UiO-66 32 3-2-3 蒸鍍金薄膜 33 3-2-4 光致發光量測 33 3-3 實驗使用之設備與耗材 34 3-3-1 實驗使用藥品及機台之型號與規格 34 第四章 實驗結果與討論 36 4-1 鈣鈦礦量子點特性及研究 36 4-1-1 材料分析及光致發光光譜 36 4-1-2 溫度響應 39 4-1-3 穩定性測試 41 4-1-4 本章小結 43 4-2 共振腔結構設計 43 4-2-1 共振腔設計及分析 44 4-2-2 混合型雷射共振腔元件光致發光量測結果 45 4-2-3 本章小節 47 第五章 結論與未來展望 48 5-1 結論 48 5-2 未來展望 49 參考資料 50

    [1] J. P. Davim, Laser in manufacturing. John Wiley & Sons, 2013.
    [2] M. L. Wolbarsht, Laser applications in medicine and biology. Springer, 1971.
    [3] A. K. Majumdar, "Free-space laser communication performance in the atmospheric channel," Journal of Optical and Fiber Communications Reports, vol. 2, no. 4, pp. 345-396, 2005.
    [4] T. Töpfer, K. P. Petrov, Y. Mine, D. Jundt, R. F. Curl, and F. K. Tittel, "Room-temperature mid-infrared laser sensor for trace gas detection," Applied optics, vol. 36, no. 30, pp. 8042-8049, 1997.
    [5] S. Wirths et al., "Lasing in direct-bandgap GeSn alloy grown on Si," Nature Photonics, vol. 9, no. 2, pp. 88-92, 2015/02/01 2015, doi: 10.1038/nphoton.2014.321.
    [6] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent Light Emission From GaAs Junctions," Physical Review Letters, vol. 9, no. 9, pp. 366-368, 11/01/ 1962, doi: 10.1103/PhysRevLett.9.366.
    [7] J.-F. Seurin et al., "High-efficiency VCSEL arrays for illumination and sensing in consumer applications," in Vertical-Cavity Surface-Emitting Lasers XX, 2016, vol. 9766: SPIE, pp. 60-68.
    [8] B. E. Saleh and M. C. Teich, Fundamentals of photonics. john Wiley & sons, 2019.
    [9] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398-410, 1968.
    [10] D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Physical review letters, vol. 90, no. 2, p. 027402, 2003.
    [11] M. Kaliteevski et al., "Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror," Physical Review B, vol. 76, no. 16, p. 165415, 2007.
    [12] G. Lheureux et al., "Polarization-controlled confined Tamm plasmon lasers," ACS photonics, vol. 2, no. 7, pp. 842-848, 2015.
    [13] P. Berini and I. De Leon, "Surface plasmon–polariton amplifiers and lasers," Nature photonics, vol. 6, no. 1, pp. 16-24, 2012.
    [14] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, "All‐inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics," Advanced materials, vol. 27, no. 44, pp. 7101-7108, 2015.
    [15] W. Heitler, The quantum theory of radiation. Courier Corporation, 1984.
    [16] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics. Cambridge University Press, 2017.
    [17] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243-265, 1927.
    [18] J. P. Gordon, H. J. Zeiger, and C. H. Townes, "Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of N H 3," Physical Review, vol. 95, no. 1, p. 282, 1954.
    [19] A. L. Schawlow and C. H. Townes, "Infrared and optical masers," Physical Review, vol. 112, no. 6, p. 1940, 1958.
    [20] T. H. Maiman, "Stimulated optical radiation in ruby," 1960.
    [21] C. B. Hitz, J. J. Ewing, and J. Hecht, Introduction to laser technology. John Wiley & Sons, 2012.
    [22] K. Shimoda, Introduction to laser physics. Springer, 2013.
    [23] W. T. Silfvast, Laser fundamentals. Cambridge university press, 2004.
    [24] J. T. Verdeyen, "Laser electronics," 1989.
    [25] E. Hecht, Optics / Eugene Hecht, Adelphi University, 5 ed. Boston: Pearson Education, Inc., 2017.
    [26] 國. 楊 and 宏. 黃, 雷射原理與量測概論 = An introduction to lasers and their measure / 楊國輝,黃宏彥作, 二版 ed. (Introduction to lasers and their measure.). 臺北市: 五南, 2008.
    [27] W. W. Chow, S. W. Koch, and M. I. Sargent, Semiconductor-laser physics. Springer Science & Business Media, 2012.
    [28] H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, "GaInAsP/InP surface emitting injection lasers," Japanese Journal of Applied Physics, vol. 18, no. 12, p. 2329, 1979.
    [29] H.-c. Yu et al., "Progress and prospects of GaN-based VCSEL from near UV to green emission," Progress in Quantum Electronics, vol. 57, pp. 1-19, 2018.
    [30] F. Koyama, "Recent advances of VCSEL photonics," Journal of Lightwave Technology, vol. 24, no. 12, pp. 4502-4513, 2006.
    [31] J.-T. Chu et al., "Room-temperature operation of optically pumped blue-violet GaN-based vertical-cavity surface-emitting lasers fabricated by laser lift-off," Japanese journal of applied physics, vol. 45, no. 4R, p. 2556, 2006.
    [32] C. W. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-cavity surface-emitting lasers: design, fabrication, characterization, and applications. Cambridge University Press, 2001.
    [33] R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 21, pp. 396-402, 1902.
    [34] "<486_表面電漿子理論與模擬 (1).pdf>."
    [35] P. Drude, "Zur elektronentheorie der metalle," Annalen der physik, vol. 306, no. 3, pp. 566-613, 1900.
    [36] 邱國斌 and 蔡定平, "左手材料奈米平板的表面電漿量子簡介," 光學工程, no. 83, pp. 8-20, 2003.
    [37] M. Sasin et al., "Tamm plasmon polaritons: Slow and spatially compact light," Applied physics letters, vol. 92, no. 25, p. 251112, 2008.
    [38] H. Arandiyan et al., "Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science," Chemical Society Reviews, vol. 50, no. 18, pp. 10116-10211, 2021.
    [39] L.-J. Xu, M. Worku, Q. He, and B. Ma, "Advances in light-emitting metal-halide perovskite nanocrystals," MRS Bulletin, vol. 45, no. 6, pp. 458-466, 2020.
    [40] B. R. Sutherland and E. H. Sargent, "Perovskite photonic sources," Nature Photonics, vol. 10, no. 5, pp. 295-302, 2016.
    [41] S. I. Seok and T.-F. Guo, "Halide perovskite materials and devices," MRS Bulletin, vol. 45, no. 6, pp. 427-430, 2020.
    [42] A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals," The Journal of Physical Chemistry, vol. 100, no. 31, pp. 13226-13239, 1996.
    [43] J. Chen et al., "Size-and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots," The journal of physical chemistry letters, vol. 8, no. 10, pp. 2316-2321, 2017.
    [44] G.-L. Yang and H.-Z. Zhong, "Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications," Chinese Chemical Letters, vol. 27, no. 8, pp. 1124-1130, 2016.
    [45] Z. Li, Y. Yan, W. Ma, J. Zhao, Y. Fan, and Y. Wang, "Chirality Transfer from Chiral Mesoporous Silica to Perovskite CsPbBr3 Nanocrystals: The Role of Chiral Confinement," CCS Chemistry, pp. 1-8, 2022.
    [46] M. Kandiah et al., "Synthesis and stability of tagged UiO-66 Zr-MOFs," Chemistry of Materials, vol. 22, no. 24, pp. 6632-6640, 2010.
    [47] 廖政霖, "鈣鈦礦量子點混合型雷射共振腔之特性," 2021.
    [48] C. Li et al., "Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing," Nano Energy, vol. 40, pp. 195-202, 2017.
    [49] A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, "Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots," Angewandte Chemie, vol. 127, no. 51, pp. 15644-15648, 2015.
    [50] D. P. Strandell and P. Kambhampati, "The Temperature Dependence of the Photoluminescence of CsPbBr3 Nanocrystals Reveals Phase Transitions and Homogeneous Linewidths," The Journal of Physical Chemistry C, vol. 125, no. 49, pp. 27504-27508, 2021.

    無法下載圖示 校內:2027-11-03公開
    校外:2027-11-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE