| 研究生: |
巴唐丹 Bara Padang Allo, Daniel |
|---|---|
| 論文名稱: |
海嘯波衝擊彈性平板之二維實驗與數值模擬研究 Tsunami Bore Impact on an Elastic Emerged Plate: A 2D Experimental Study and Numerical Investigation |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 143 |
| 外文關鍵詞: | Dam-break wave, Elastic plate, Particle image velocimetry, Solids4Foam, Fluid-structure interaction |
| 相關次數: | 點閱:22 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This research investigates the interaction of tsunami bore with vertical plates of varying stiffness, thickness, and height, employing both two-dimensional laboratory experiments and numerical modeling approaches. The experimental investigation was performed under three distinct wave conditions, capturing data on free surface elevation, horizontal force, and plate deformation. Velocity fields were captured using Particle Image Velocimetry (PIV) for the case with Froude number, Fr = 1.62. The results revealed that the stiffer plates produced more pronounced bore reflections, leading to a more significant decrease in flow velocity in the vicinity of the plate. Nevertheless, once the free surface elevation reached a steady-state level, the variations in flow characteristics among the different plate material diminished. Time series analysis data for surface elevation, x-directional displacement (D), and hydrodynamic force showed that the peak force occurred shortly following the highest recorded surface elevation, while the maximum horizontal deformation of the plate followed later. These experimental findings were further examined through numerical simulations using solids4Foam, an FSI solver coupled with the k-ε turbulence model, which was validated against the experimental data. Parametric analyses demonstrated that reducing Young's modulus increased plate deformation but had a limited impact on force magnitude due to minimal changes in upstream surface elevation. In contrast, reducing plate thickness lowered surface elevation and significantly decreased the acting force, particularly for plates as thin as 5 mm. Increasing plate height resulted in the greatest deformation, higher surface elevation, and increased force.
Aitken, A. C. (1927). XXV.— On Bernoulli's Numerical Solution of Algebraic Equations. Proceedings of the Royal Society of Edinburgh, 46, 289-305.
Al-Faesly, T., Palermo, D., Nistor, I., & Cornett, A. (2012). Experimental Modeling of Extreme Hydrodynamic Forces on Structural Models. International Journal of Protective Structures, 3 No.4, 477-506.
Allo, D. B. P., Hsiao, Y., & Hsiao, S.-C. (2024). Experimental study of tsunami-bores impact on the elastic emerged plate. Ocean Engineering, 313, 119444.
Antoci, C., Gallati, M., & Sibilla, S. (2007). Numerical simulation of fluid–structure interaction by SPH. Computers & Structures, 85, 879-890.
Arnason, H., Petroff, C., & Yeh, H. (2009). Tsunami Bore Impingement onto a Vertical Column. Journal of Disaster Research, Vol.4 No.6, 391-403.
Attili, T., Heller, V., & Triantafyllou, S. (2021). A numerical investigation of tsunamis impacting dams. Coastal Engineering, 169, 103942.
Attili, T., Heller, V., & Triantafyllou, S. (2023). Wave impact on rigid and flexible plates. Coastal Engineering, 182, 104302.
Augustin, L. N., Irish, J. L., & Lynett, P. (2009). Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation. Coastal Engineering, 56, 332-340.
Barranco, I., & Liu, P. L.-F. (2021). Run-up and inundation generated by non-decaying dam-break bores on a planar beach. Journal of Fluid Mechanics, 915.
Benazir, Triatmadja, R., Rahardjo, A. P., & Yuwono, N. (2019). The behavior of a tsunami like wave produced by dam break and its run-up on 1:20 slope. J. Tsunami Soc. Int., 38(2), 49-67.
Bi, C., Wu, M. S., & Law, A. W.-K. (2022). Surface wave interaction with a vertical viscoelastic barrier. Applied Ocean Research, 120, 103073.
Cardiff, P., Karač, A., Jaeger, P. D., Jasak, H., Nagy, J., Ivankovic´, A., & Tukovic, Z. (2018). An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. arXiv Preprint arXiv180810736.
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, 1247-1250.
Chang, K.-A., Hsu, T.-J., & Liu, P. L.-F. (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle Part I. Solitary waves. Coastal Engineering, 44, 13-36.
Chang, K.-A., & Liu, P. L.-F. (1999). Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Physics of Fluids, 11, 3390-33400.
Chanson, H. (2006). Tsunami surges on dry coastal plains : application of dam break wave equations. Coastal Engineering Journal, 48 (4), 355-370.
Chen, Y.-k., Meringolo, D. D., & Liu, Y. (2024). SPH numerical model of wave interaction with elastic thin structures and its application to elastic horizontal plate breakwater. Marine Structures, 93, 103531.
Diamantoulaki, I., Angelides, D. C., & Manolis, G. D. (2008). Performance of pile-restrained flexible floating breakwaters. Applied Ocean Research, 30, 243-255.
Didiern, E., Neves, D. R. C. B., Martins, R., & Neves, M. G. (2014). Wave interaction with a vertical wall: SPH numerical and experimental modeling. Ocean Engineering, 88, 330-341.
Donea, J., Huerta, A., Ponthot, J.-P., & Rodríguez-Ferran, A. (2017). Arbitrary Lagrangian–Eulerian methods. In E. Stein, R. d. Borst, & T. J. R. Hughes (Eds.), Encyclopedia of Computational Mechanics Second Edition (pp. 1-23): John Wiley & Sons, Ltd.
Eijk, M. v. d., & Wellens, P. R. (2019). A compressible two-phase flow model for pressure oscillations in air entrapments following green water impact events on ships. International Shipbuilding Progress, 66, 315-343.
Fritz, H. M., Petroff, C. M., N., P. A. C., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S. E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar, R., Dominguez, J. C., & Synolakis, C. E. (2011). Field survey of the 27 February 2010 Chile Tsunami. Pure Appl. Geophys., 168, 1989-2010.
Gacia, E., & Duarte, C. M. (2001). Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Estuarine, Coastal and Shelf Science, 52, 505-514.
Ghafari, A., Tavakoli, M. R., Nili-Ahmadabadi, M., Teimouri, K., & Kim, K. C. (2021). Investigation of interaction between solitary wave and two submerged rectangular obstacles. Ocean Engineering, 237.
Guan, D., Melville, B. W., & Friedrich, H. (2014). Flow patterns and turbulence structures in a scour hole downstream of a submerged weir. Journal of Hydraulic Engineering, 140(1), 68-76.
Hirt, C. W., & Nichols, B. D. (1981). Volume of Fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225.
Hou, G., Wang, J., & Layton, A. (2012). Numerical methods for fluid-structure interaction - a review. Communications in Computational Physics, 12 (2), 337-377.
Hsiao, Y., & Hsiao, S.-C. (2022). Experimental study on the interaction of solitary wave with elastic submerged plate. Ocean Engineering, 261, 112106.
Hsiao, Y., Hsiao, S.-C., & Liu, P. L.-F. (2023). Two-dimensional numerical simulations of solitary wave interaction with a vertical elastic plate. Ocean Engineering, 284, 115160.
Hu, K. C., Hsiao, S. C., Hwung, H. H., & Wu, T.-R. (2012). Three-dimensional numerical modeling of the interaction of dam-break waves and porous media. Advances in Water Resources, 47, 14-30.
Hu, Z., & Li, Y. (2023). Two-dimensional simulations of large-scale violent breaking wave impacts on a flexible wall. Coastal Engineering, 185, 104370.
Huang, L., Li, Y., Benites-Munoz, D., Windt, C., Feichtner, A., Tavakoli, S., Davidson, J., Paredes, R., Quintuna, T., Ransley, E., Colombo, M., Li, M., Cardiff, P., & Tabor, G. (2022). A review on the modelling of wave-structure interactions based on Openfoam. OpenFOAM® Journal, 2, 116-142.
Huang, L., Ren, K., Li, M., Tuković, Ž., Cardiff, P., & Thomas, G. (2019). Fluid-structure interaction of a large ice sheet in waves. Ocean Engineering, 182, 102-111.
Huang, Y.-C. (2021). Experimental study on the runup of dambreak-generated bores on smooth and rough slopes National Cheng Kung University].
Idelsohn, S. R., Marti, J., Souto-Iglesias, A., & Oñate, E. (2008). Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput. Mech., 43, 125-132.
Iphineni, H., Windén, B., & Girimaji, S. S. (2024). Toward high-fidelity Numerical Wave Tank development: Scale resolving Partially-Averaged Navier–Stokes simulations of dam-break flow. Ocean Engineering, 291, 116407.
Ismail, N., Okazakia, K., Ochiaia, C., & Fernandez, G. (2018). Livelihood Strategies after the 2004 Indian Ocean Tsunami in Banda Aceh, Indonesia. Procedia Engineering, 212, 551-558.
Issakhov, A., Zhandaulet, Y., & Nogaeva, A. (2018). Numerical simulation of dam break flow for various forms of the obstacle by VOF method. International Journal of Multiphase Flow, 109, 191-206.
Kassiotis, C., Ibrahimbegovic, A., & Matthies, H. (2010). Partitioned solution to fluidstructure interaction problems in application to free-surface flows. European Journal of Mechanics-B/Fluids, 29, 510-521.
Kikkert, G. A., O'Donoghue, T., Pokrajac, D., & Dodd, N. (2012). Experimental study of bore-driven swash hydrodynamics on impermeable rough slopes. Coastal Engineering, 60, 149-166.
Kimmoun, O., Malenica, Š., & Scolan, Y.-M. (2009). Fluid structure interactions occuring at a flexible vertical wall impacted by a breaking wave. The Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan.
Kirwan, M. L., & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 53-60.
Koley, S., Panduranga, K., Almashan, N., Neelamani, S., & Al-Ragum, A. (2020). Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters. Ocean Engineering, 218, 108218.
Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1, 131-138.
Lee, J.-F., & Chen, C.-J. (1990). Wave interaction with hinged flexible breakwater. Journal of Hydraulic Research, 28 (3), 283-297.
Liao, K., Hu, C., & Sueyoshi, M. (2015). Free surface flow impacting on an elastic structure: Experiment versus numerical simulation. Applied Ocean Research, 50, 192-208.
Ligget, J. A. (1994). Fluid Mechanics. McGraw-Hill.
Lin, C., Ho, T.-C., Chang, S.-C., Hsieh, S.-C., & Chang, K.-A. (2005). Vortex shedding induced by a solitary wave propagating over a submerged vertical plate. International Journal of Heat and Fluid Flow, 26, 894-904.
Lin, C., Kao, M.-J., Yuan, J.-M., Raikar, R. V., Wong, W., Yang, J., & Yang, R.-Y. (2020). Features of the flow velocity and pressure gradient of an undular bore on a horizontal bed. Physics of Fluids, 32, 043603.
Linton, D., Gupta, R., Cox, D., Lindt, J. v. d., Oshnack, M. E., & Clauson, M. (2013). Evaluation of tsunami loads on wood-frame walls at full scale. Journal of Structural Engineering, 139 (8), 1318-1325.
Liu, H., & Lin, P. (2025). A coupled numerical model for interactions between waves and flexible vegetation blades. Coastal Engineering, 202, 104838.
Liu, P. L.-F., Lin, P., Chang, K.-A., & Sakakiyama, T. (1999). Numerical modeling of wave interaction with porous structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(6), 322-330.
Liu, S., Nistor, I., Mohammadian, A., & Azimi, A. H. (2022). Experimental and numerical investigation of beach slope effects on the hydrodynamic loading of tsunami-like surges on a vertical wall. Journal of Marine Science and Engineering, 10, 1580.
Lu, H., Wang, Q., & Liu, H. (2023). An investigation of jet in plunging wave using an improved PIV method. In. ISOPE International Ocean and Polar Engineering Conference, Ottawa, Canada.
Lu, H., Wang, Q., Zhao, C., & Liu, H. (2025). Solitary wave evolution over a 3D submarine topography. Coastal Engineering, 200, 104758.
Magdalena, I., Hariz, A. A. A., Farid, M., & Kusuma, M. S. B. (2021). Numerical studies using staggered finite volume for dam break flow with an obstacle through different geometries. Results in Applied Mathematics, 12, 100193.
Magdalena, I., & Pebriansyah, M. F. E. (2022). Numerical treatment of finite difference method for solving dam break model on a wet-dry bed with an obstacle. Results in Engineering, 14, 100382.
Matsutomi, H., & Iizuka, H. (1998). Tsunami current velocity on land and its simple estimation method. Proc. Coastal Eng., JSCE 45, 361-365 (in Japanese).
Miller, R. L. (1968). Experimental determination of run-up of undular and fully developed bores. Journal of Geophysical Research, 73 (14), 4497-4510.
Mimura, N., Yasuhara, K., Kawagoe, S., Yokoki, H., & Kazama, S. (2011). Damage from the Great East Japan Earthquake and Tsunami - a quick report. Mitigation and Adaptation Strategies for Global Change. https://doi.org/10.1007/s11027-011-9297-7
Mohsenabadi, S. E., Nistor, I., Mohammadian, A., & Gildeh, H. K. (2023). CFD modelling of initial stages of dam-break flow. Can. J. Civ. Eng., 00, 1-15.
Mori, N., & Takahashi, T. (2012). Nationwide post event survey and analysis of the 2011 Tohoku Earthquake Tsunami. Coastal Engineering Journal, 54 (1).
Nandasena, N. A. K., Sasaki, Y., & Tanaka, N. (2012). Modeling field observations of the 2011 Great East Japan tsunami: Efficacy of artificial and natural structures on tsunami mitigation. Coastal Engineering, 67, 1-13.
Nouri, Y., Nistor, I., & Palermo, D. (2010). Experimental investigation of tsunami impact on free standing structures. Coastal Engineering Journal, 52 (1), 43-70.
Oertel, M., & Sufke, F. (2020). Two-dimensional dam-break wave analysis: particle image velocimetry versus optical flow. Journal of Hydraulic Research, 58, No.2, 326-334.
Ozmen-Cagatay, H., & Kocaman, S. (2011). Dam-break flow in the presence of obstacle: experiment and CFD simulation. Engineering Applications of Computational Fluid Mechanics, 5:4, 541-552.
Peregrine, D. H., & Thais, L. (1996). The effect of entrained air in violent water wave impacts. Journal of Fluid Mechanics, 325, 377-397.
Rahman, S., Akib, S., Khan, M. T. R., & Shirazi, S. M. (2014). Experimental study on tsunami risk reduction on coastal building fronted by sea wall. The Scientific World Journal, 7, Article ID 729357.
RMS, N., CA. USA. (2006). Risk Management Solutions; Managing Tsunami Risk in the Aftermath of the 2004 Indian Ocean Earthquake & Tsunami.
Rodi, W. (1980). Rodi, W. 1980 Turbulence Models and Their Application in Hydraulics : A State-of-the-Art Review. IAHR Publication.
Rusche, H. (2003). Computational fluid dynamics of dispersed two-phase flows at high phase fractions Imperial College London (University of London)].
Ryu, Y., Chang, K.-A., & Lim, H.-J. (2005). Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas. Sci. Technol. 16 1945, 16 (10).
Sahoo, T. (2012). Mathematical Techniques for Wave Interaction with Flexible Structures. CRC Press.
Scarano, F. (2012). Tomographic PIV: principles and practice. Measurement Science and Technology, 24 (1).
Shadloo, M. S., Oger, G., & Touzé, D. L. (2016). Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Computers & Fluids, 136, 11-34.
Shen, M. C., & Meyer, R. E. (1962). Climb of a bore on a beach, Part 3. Run up. Fluid Mechanics, 16, 113-125.
Shuto, N. (1985). The Nihonkai-Chubu Earthquake Tsunami on the North Akita Coast. Coastal Engineering in Japan, 28, 255-264.
Sigren, J. M., Figlus, J., Highfield, W., Feagin, R. A., & Armitage, A. R. (2018). The effects of coastal dune volume and vegetation on storm-induced property damage: Analysis from hurricane ike. Journal of Coastal Research, 34(1), 164-173.
Simsek, O., & Islek, H. (2023). 2D and 3D numerical simulations of dam-break flow problem with RANS, DES, and LES. Ocean Engineering, 276, 114298.
Sree, D. K. K., Mandal, S., & Law, A. W.-K. (2021). Surface wave interactions with submerged horizontal viscoelastic sheets. Applied Ocean Research, 107, 102483.
Stoker, J. J. (1957). Water Waves, The Mathematical Theory with Application. Interscience Publishers, Inc.
Tappin, D. R., Evans, H. M., Jordan, C. J., Richmond, B., Sugawara, D., & Goto, K. (2012). Coastal changes in the Sendai area from the impact of the 2011 Tōhoku-oki tsunami: Interpretations of time series satellite images, helicopter-borne video footage and field observations. Sedimentary Geology, 282, 151-174.
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., & Vriend, H. J. D. (2013). Ecosystem-based coastal defence in the face of global change. Nature, 504, 79-83.
Triatmadja, R., & Benazir. (2014). "Simulation of tsunami force on rows of buildings in Aceh region after tsunami disaster in 2004". Sci. Tsunami Hazard., 33(3), 156-169.
Triatmadja, R., & Nurhasanah, A. (2012). Tsunami force on buildings with openings and protection. Journal of Earthquake and Tsunami, 6(4).
Tsai, I.-C., Li, S.-Y., Hsiao, S.-C., & Hsiao, Y. (2021). Numerical simulation of 2-D fluid-structure interaction with a tightly coupled solver and establishment of the mooring model. International Journal of Naval Architecture and Ocean Engineering, 13, 433-449.
Tuković, Ž., Karač, A., Cardiff, P., Jasak, H., & Ivankovic, A. (2018). OpenFoam finite volume solver for fluid-solid interaction Trans FAMENA 42 (3).
Veelen, T. J. V., Karunarathna, H., & Reeve, D. E. (2021). Modelling wave attenuation by quasi-flexible coastal vegetation. Coastal Engineering, 164, 103820.
Wang, D., & Dong, S. (2023). A numerical model for simulating the interaction of dam-break waves and floating structures. Ocean Engineering, 285, 115469.
Weller, H. G. (2002). Derivation, modelling and solution of the conditionally averaged two-phase flow equations. Technical Report TR/HGW/02. Nabla Ltd.
Willmott, C. J. (1981). On the validation of models. Phys. Geog., 2 (2), 184-194.
Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79-82.
Wu, T.-R., & Liu, P. L. F. (2009). Numerical Study on the three-dimensional dambreak bore interacting with square cylinder. World Scientific Publishing Co. Pte Ltd.
Wu, T.-R., Vuong, T.-H.-N., Lin, J.-W., Chu, C.-R., & Wang, C.-Y. (2018). Three-dimensional numerical study on the interaction between dam-break wave and cylinder array. Journal of Earthquake and Tsunami, 12, No. 2.
Wu, Y.-T., Hsiao, S.-C., Huang, Z.-C., & Hwang, K.-S. (2012). Propagation of solitary waves over a bottom-mounted barrier. Coastal Engineering, 62, 31-47.
Wu, Y.-T., & Huang, Y.-C. (2020). Runup of dambreak-generated bore on a smooth slope. The 42nd Ocean Engineering Conference, National Taiwan Ocean University - Taiwan.
Wu, Y.-T., & Huang, Y.-C. (2025). Runup and inundation of non-decaying dam-break bores on roug uniform slopes. Ocean Engineering, 339, 122190.
Wüthrich, D., Pfister, M., Nistor, I., & Schleiss, A. J. (2018). Experimental study on the hydrodynamic impact of tsunami-like waves against impervious free-standing buildings. Coast. Eng. J. , 60(2), 180-199.
Xie, P., & Chu, V. H. (2019). The forces of tsunami waves on a vertical wall and on a structure of finite width. Coastal Engineering, 149, 65-80.
Xu, X., Jiang, Y.-L., & Yu, P. (2021). SPH simulations of 3D dam-break flow against various forms of the obstacle: Toward an optimal design. Ocean Engineering, 229, 108978.
Yang, X., Liu, M., Peng, S., & Huang, C. (2016). Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH–EBG method. Coastal Engineering, 108, 56-64.
Yeh, H. H., Ghazali, A., & Marton, I. (1989). Experimental study of bore run-up. Journal of Fluid Mechanics, 206, 563-578.
Yilmaz, A., Kocaman, S., & Demirci, M. (2021). Numerical modeling of the dam-break wave impact on elastic sluice gate: A new benchmark case for hydroelasticity problems. Ocean Engineering, 231, 108870.
Zhang, G., Zha, R., & Wan, D. (2022). MPS–FEM coupled method for 3D dam-break flows with elastic gate structures. European Journal of Mechanics - B/Fluids, 94, 171-189.