| 研究生: |
李堃瑞 Li, Kun-Jui |
|---|---|
| 論文名稱: |
應用粒子濾波器追蹤演算法於自主車輛駕駛之研究 Application of Particle Filter Tracking Algorithm in Autonomous Vehicle Navigation |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 車輛模型 、車輛導航系統 、粒子濾波器追蹤演算法 |
| 外文關鍵詞: | Vehicle Model, Vehicle Navigation System, Particle Filter Tracking Algorithm |
| 相關次數: | 點閱:131 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在利用車輛模型與粒子濾波器追蹤演算法發展自主式駕駛應用。一般來說,車輛導航系統包括即時環境感知,車輛定位,車輛避撞,路徑規劃以及路徑追隨控制。為了實現及開發智能自走車功能,本研究整合慣性感測元件(IMU),GNSS接收機和增量式編碼器進行載具動態估測。在演算法設計過程中,地圖輔助的路徑規劃提供一個追蹤之參考路線。
為此,開發於LabVIEW平台之人機界面(UMI)即可進行即時觀察路徑追蹤情況。在車輛預測控制的方面,本文利用粒子濾波器演算法於規劃軌跡上作路徑預測。遞迴式粒子濾波器以取樣權重估測位置並且推估轉向角響應。另外,所有應用之感測器皆整合至一個嵌入式運算平台並進行即時接收以及效能評估。搭配感測器以及嵌入式電腦平台之輕型電動車於校園內進行實驗並且路徑預測與轉向角之性能也由此驗證。
The thesis describes the design, implementation, and test of an autonomous vehicle navigation system using vehicle model and particle filter tracking algorithm. Typically, a vehicle navigation system comprises of real-time environment perception, vehicle localization, collision avoidance, path planning, and path following control. In order to implement the features for intelligent autonomous vehicle, a sensor suite of integrated inertial measurement unit (IMU), GNSS receiver, and incremental encoder is developed for vehicle dynamic estimation. In the design, a map-aided path planning strategy is employed to generate a reference route. To this end, a UMI (User Machine Interface) programming on LabVIEW platform is developed to facilitate the observation of a goal-oriented path tracking performance.
In the aspect of vehicle estimation control, the system utilizes particle filter algorithm to ensure that the actual trajectory follows the planned path. The recursive particle filter is able to weight the cells and response the angle as well as estimated position information. All the sensors are integrated into an embedded computer platform to assess the autonomous driving capability. The test is conducted on campus by installing the sensor suite and embedded computer platform into an electric vehicle. The trajectory tracking capability is preliminarily verified.
[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking," IEEE Transactions on Signal Processing, vol. 50, pp. 174-188, 2002.
[2] C. Chen, Y. Jia, J. Du, and J. Zhang, "Non-Linear Decoupling Control of Vehicle Plane Motion," IET Control Theory & Applications, vol. 6, pp. 2083-2094, 2012.
[3] N. I. Corporation. (2013). Benefits of Programming Graphically in NI LabVIEW. Available: http://www.ni.com/white-paper/14556/en/
[4] N. I. Corporation. (2013). NI LabVIEW FPGA Module. Available: http://www.ni.com/labview/fpga/
[5] N. I. Corporation. (2013). NI LabVIEW Real-Time Module. Available: http://www.ni.com/labview/realtime/
[6] S. T. Dieter Fox, Wolfram Burgard and Frank Dellaert, Particle Filters for Mobile Robot Localization: Sequential Monte Carlo Methods in Practice, 2011.
[7] K.-T. Feng, "Vehicle Lateral Control for Driver Assistance and Automated Driving," PhD Dissertation, University of California, 2000.
[8] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to nonlinear/non-Gaussian Bayesian state estimation," Radar and Signal Processing, IEE Proceedings F, vol. 140, pp. 107-113, 1993.
[9] E. Guizzo, "How Google's Self-Driving Car Works," ed: IEEE Spectrum, 2011.
[10] J. Guldner, W. Sienel, T. Han-Shue, J. Ackermann, S. Patwardhan, and T. Bunte, "Robust Automatic Steering Control for Look-Down Reference Systems with Front and Rear Sensors," IEEE Transactions on Control Systems Technology, vol. 7, pp. 2-11, 1999.
[11] H.-P. Halvorsen. (2012). Introduction to LabVIEW. Available: http://home.hit.no/~hansha/documents/labview/training/Introduction%20to%20LabVIEW/Introduction%20to%20LabVIEW.pdf
[12] J. I. Hernandez and K. Chen-Yuan, "Steering control of automated vehicles using absolute positioning GPS and magnetic markers," IEEE Transactions on Vehicular Technology, vol. 52, pp. 150-161, 2003.
[13] R. N. Jazar, in Vehicle Dynamics: Theory and Application, ed: Springer US, 2008.
[14] J. Kichun, C. Keounyup, and S. Myoungho, "Interacting Multiple Model Filter-Based Sensor Fusion of GPS With In-Vehicle Sensors for Real-Time Vehicle Positioning," IEEE Transactions on Intelligent Transportation Systems, vol. 13, pp. 329-343, 2012.
[15] U. Kiencke and L. Nielsen, Automotive Control Systems: For Engine, Driveline, and Vehicle, 2nd ed.: Springer, 2005.
[16] J. Levinson and S. Thrun, "Robust Vehicle Localization in Urban Environments Using Probabilistic Maps," in 2010 IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 4372-4378.
[17] L. Li, W. Fei-Yue, and Z. Qunzhi, "Integrated Longitudinaland Lateral Tire/Road Friction Modeling and Monitoring for Vehicle Motion Control," IEEE Transactions on Intelligent Transportation Systems, vol. 7, pp. 1-19, 2006.
[18] T. Luettel, M. Himmelsbach, and H. J. Wuensche, "Autonomous Ground Vehicles - Concepts and a Path to the Future," Proceedings of the IEEE, vol. 100, pp. 1831-1839, 2012.
[19] I. Miller, M. Campbell, and D. Huttenlocher, "Map-aided Localization in Sparse Global Positioning System Environments using Vision and Particle Filtering," Journal of Field Robotics, vol. 28, pp. 619-643, 2011.
[20] W. Milliken and D. Milliken, Race Car Vehicle Dynamics: Society of Automotive Engineers Inc., 1995.
[21] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and S. Thrun, "Junior: The Stanford entry in the Urban Challenge," Journal of Field Robotics, vol. 25, pp. 569-597, 2008.
[22] R. Rajamani, "Lateral Vehicle Dynamics," in Vehicle Dynamics and Control, ed: Springer US, 2006, pp. 15-49.
[23] G. S. Richard Wallace, "Self-driving cars: The next revolution," 2012.
[24] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications: Artech House, 2004.
[25] J. L. S.Thrun, and V.Verma, "Risk Sensitive Particle Filters," in the Advances in Neural Information Processing Systems 14, 2002.
[26] SAE, SAE J670 –Vehicle Dynamics Terminology. Vehicle Dynamics Standards Committee, Warrendale, PA, USA: Society of Automotive Engineers, 2008.
[27] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer, "Toward autonomous driving: the CMU Navlab. I. Perception," IEEE Expert, vol. 6, pp. 31-42, 1991.
[28] C. Thorpe, M. Herbert, T. Kanade, and S. Shafter, "Toward autonomous driving: the CMU Navlab. II. Architecture and systems," IEEE Expert, vol. 6, pp. 44-52, 1991.
[29] S. Thrun. (2012). Artificial Intelligence for Robotics. Available: https://www.udacity.com/course/cs373
[30] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics: The MIT Press, 2005.
[31] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, "Robust Monte Carlo Localization for Mobile Robots," Artificial Intelligence, vol. 128, pp. 99-141, 2001.
[32] V. Verma, S. Thrun, and R. Simmons, "Variable Resolution Particle Filter," in the Proceedings of the 18th international joint conference on Artificial intelligence, Acapulco, Mexico, 2003.
[33]L. Wan, Y. C. Liu, and Y. M. Pi, "Comparing of Target-Tracking Performances of EKF, UKF and PF," Radar Science and Technology, vol. 1, p. 003, 2007.
[34]J. Y. Wong, "Handling Characteristic Of Road Vehicles," in Theory of Ground Vehicles, 4th ed: WILEY, 2008, pp. 363-418.
[35]J. Yang, E. Hou, and M. Zhou, "Front Sensor and GPS-Based Lateral Control of Automated Vehicles," IEEE Transactions on Intelligent Transportation Systems, vol. 14, pp. 146-154, 2013.
[36]莊智清, 衛星導航: 全華圖書, 2012.