| 研究生: |
王梓川 Wang, Tzyy-Chuan |
|---|---|
| 論文名稱: |
整合二氧化鈦緻密層與珊瑚狀奈米線結構光陽極之製作與其應用於液態電解液染料敏化太陽能電池之研究 Fabrication of TiO2 photoanode with compact layer and coral-like nanowire integrated structure and its application on liquid electrolyte dye sensitized solar cell |
| 指導教授: |
王水進
Wang, Shui-Jinn 陳建富 Chen, Jiann-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 二氧化鈦緻密層 、珊瑚狀奈米線 、珊瑚狀樹枝奈米線 、染料敏化太陽能電池 |
| 外文關鍵詞: | TiO2 compact layer, coral-like nanowire, coral-like nanobranch, Dye sensitized solar cell |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提升染料敏化太陽能電池光電轉換效率與降低製程複雜度及成本,本研究新開發出利用兩段式水熱法成長珊瑚狀二氧化鈦奈米線與珊瑚狀樹枝奈米線結構,以增加表面積粗糙度及染料吸附量。以及利用RF Sputter濺鍍高品質緻密性的二氧化鈦薄膜,改善TCO/TiO2介面所造成的暗電流。
經利用濺鍍機製備二氧化鈦緻密層(compact layer)改善TCO/TiO2介面所造成的電子複合,減少了暗電流亦即電子反向流動的發生,以抑制TiO2上的電子回傳給氧化態電解質而產生interception的作用。本研究所製備的二氧化鈦緻密層,可當作利用水熱法成長一維,單晶二氧化鈦奈米線之晶種層(seed layer)。
至於珊瑚狀奈米線(coral-like NWs)和珊瑚狀樹枝奈米線(coral-like nanobranch)結構方面,藉由提高表面粗糙度及染料吸附量以及一維結構之量子侷限效應,以提升光電轉換效率。經實驗得知,當水熱法成長二氧化鈦珊瑚狀奈米線與珊瑚狀樹枝奈米線的成長時間為8 h時,可得較佳之光電轉換效率(η)分別為2.43 %與5.46 %。本研究所提出的結構,明顯有效的提高表面粗糙度及染料吸附量,進一步改善染料敏化太陽能電池光電特性。
本研究以濺鍍機製備二氧化鈦緻密層,搭配HTG製備出具有良好的單晶、高表面積、可吸附較多的光敏染料、製程簡便、成本低的珊瑚狀奈米線和珊瑚狀樹枝奈米線結構。預期在未來染料敏化太陽能電池元件應用上極具潛力。
Enhancing the efficiency of Dye-Sensitized Solar Cell (DSSC) using novel photoanode structures and improving charge recombination at the TCO/TiO2 interface of the proposed photoanodes have been demonstrated in this work.
A sputtering-deposited compact TiO2 layer was employed to reduce the charge recombination at the TCO/TiO2 interface and suppress the inverse dark-current, thus decreasing the interception of electrons into oxidized electrolyte in TiO2 layer. In addition, the compact TiO2 layer was also served as a seed layer for the growth of TiO2 nanowire by hydrothermal growth (HTG) method.
Two types of photoanode with novel nano-structures (i.e., coral-like TiO2 nanowires and nanobranchs using a two-step HTG processes) were proposed to promote photovoltaic performance of DSSCs in our experiments. It is found that DSSCs with coral-like TiO2 and coral-like TiO2 nanobranchs prepared by HTG for 8 hr would have the best photovoltaic performance with a conversion efficiency (η) 2.43 % and 5.46 %, respectively. Such improvements should be due to the proposed photoanodes providing a considerable increase in surface roughness and absorption efficiency of dye molecules.
It is expected that the photoanodes proposed in the present study would have promising potentials for the realization of high efficient DSSCs.
1. J. Zhao, A. Wang, and A. Green, 「19.8 % efficient 『『honeycomb'』 textured multicrystalline and 24.4 % monocrystalline silicon solar cells」 Appl. Phys. Lett. 73, (1998)
2. K Miltiadis, Hatalis, Greve and W. David, 「Large grain polycrystalline silicon by low‐temperature annealing of low‐pressure chemical vapor deposited amorphous silicon films」 Appl. Phys. Lett. 63, (2009)
3. T. Tiedje, G. D. Cody, B. Abeles, B. Brooks, and Y. Goldstein, 「Disorder and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon」 Phys. Rev. Lett. 47, 1480–1483 (1981)
4. A. Martin, Green1, K. Emery, Y. Hishikawa and W. Warta, 「Solar cell efficiency tables (version 37)」 Appl. Phys. Lett. 19, 84–92 (2011)
5. Q. Huang, K. Reuter, S. Amhed, L. Deligianni, L. T. Romankiw, S. Jaime, P.-P. Grand, and V. Charrier, 「Electrodeposition of Indium on Copper for CIS and CIGS Solar Cell Applications」 J. Electrochem. Soc. Lett. 158, D57-D61 (2011)
6. Z. Jehla, F. Erfurtha and N. Naghavi, 「Thinning of CIGS solar cells: Part II: Cell characterizations」 Elsevier., 10, 1016 (2011)
7. B. A. Korevaar, R. Shuba, A. Yakimov, H. Cao, J. C. Rojo and T.R. Tolliver, 「Initial and degraded performance of thin film CdTe solar cell devices as a function of copper at the back contact」 Electrochimica Acta 10, 1016 (2011)
8. http://www.digitimes.com.tw/tw/dt/n/shwnws.asp, 國家實驗研究院科技政策研究與資訊中心(Science & Technology Polocy Research and Information Center, STPI)
9. M. Grätzel 「Photoelectrochemical cells」 Nature 414, 338-344 (2001)
10. Y Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, 「Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1 %」 Appl. Phys. Lett. 45, 638-640 (2006)
11. The graph was created and prepared by the National Renewable Energy Laboratory (NREL) for the US Department of Energy.
12. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, 「Dye-Sensitised zinc oxide: aqueous electrolyte: platinum photocell」 Nature 261, 402-403 (1976)
13. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe and G. Cao, 「Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells」 Angew. Chem. Int. Ed., 47, 2402 (2008)
14. Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida and S. Yoshikawa, 「Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells」 Cent. Eur. J. Chem. 4, 476-488 (2006)
15. J. Wang and Z. Lin, 「Titania Nanotubes Prepared by Chemical」 Adv. Mater. 0935-9648 (1999)
16. B. Liu and E. S. Aydil, 「Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells」 J. AM. CHEM. SOC., 131, 3985–3990 (2009)
17. 李陸玲、陳建仲、刁維光,」染料敏化太陽能電池的基本原理與元件最佳化策略研究」 化工 第56卷第2期 (2009)
18. H. Yu and S. Zhang, 「An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells」 Electrochimica Acta 54, 1319–1324 (2009)
19. S. H. Kang and M. S. Kang, 「Columnar rutile TiO2 based dye-sensitized solar cells by radio-frequency magnetron sputtering」 Journal of Power Sources 184, 331–335 (2008)
20. L. A. Knauss, J. M. Pond, J. S. Horwitz, D. B. Chrisey, C. H. Mueller, and R. Treece, 「The effect of annealing on the structure and dielectric properties of BaxSr1-xTiO3 ferroelectric thin films」 Appl. Phs. Lett., 69, 25 (1996)
21. H. Bach, and D. Krause, Thin Films on Glass, Springer, Heidelberg, (1997)
22. H. Hiroshi, and K. Takao, SPIE, 67, 1758 (1992)
23. J. Cao, J. Z. Sun, H. Y. Li, J. Hong, and M. Wang, 「A facile room-temperature chemical reduction method to TiO2@Cds core/sheath heterostructure nanowires」 J. Mater. Chem., 14, 1203 (2004)
24. D. V. Bavyhin, A. A. Lapkin, P.K. Plucinski, J. M. Friedrich, and F. C. Walsh, 「Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotube」 J. Phys. Chem. B, 109, 19422 (2005)
25. O. K. Varghese, D. Gong, M. Paulose, K. O. Ong, E. C. Dickey, and C. A. Grimes, 「Exreme Changes in the Electrical Resistance of Titania Nanotube with Hydrogen Exposure」 Adv.Mater., 15, 624 (2003)
26. L. Kavan, M. Graetzel, J. Rathousky and A. Zukal, 「Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties」 J. Electrochem. Soc. 143,394 (1996)
27. S. Uchida, R. Chiba, M. Tomiha, N. Masaki, and M. Shirai, Electrochemistry, 70, 418 (2002)
28. N. Ozer, 「Reproducibility of the coloration processes in TiO2 films」, Thin Solid Films 214, 17 (1992)
29. C. G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindström, G. A. Niklasson, C. G. Ribbing, D. Rönnow, M. Stromme Mattsson and M. Veszelei, 「Towards the smart window: progress in electrochromics」 J. Non-Cryst. Solid, 218, 273 (1997)
30. R. Marchand, L. Brohan and M. Tournoux, 「TiO2 (B) a new form of titanium dioxide and the potassium octatitante K2Ti8O17」 Mat. Res. Bull., 15, 1129 (1980)
31. T. E. Weirich, M. Winterer, S. Seifried, H. Hahn, and H. Fuess, 「Rietveld Analysis of Electron Powder Diffaction Data from Nanocrystalline Anatase, TiO2」 Ultramicroscopy, 81, 263 (2000)
32. J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, 「Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffaction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxde at 15K and 295K」 J. of the Am. Chem.Soc., 109, 3639 (1987)
33. E. P. Meagher and G. A. Lager, 「Polyhedral thermal expansion in the TiO2 polymorphs: refinement of the crystal structre of rutile and brookite at high temperature」 Canadian Mineralogist, 17, 77 (1979)
34. M. Latroche, L. Brohan, R. Marchand, and M. Tournoux, 「New hollandite oxides: TiO2 (H)and K0.06 TiO2」 J. of Solid State Chem., 81, 78 (1989)
35. J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki and H. Takei, 「Topotactic Oxidation of Ramsdellite-Type Li0.5 TiO2, a New Polymorph of Titanium Dioxide:TiO2(R)」 J. of Solid State Chem., 113, 27 (1994)
36. P. Y Simons and F. Dachille, 「Thestructure of TiO2(II),a high-pressure phase of TiO2」 Acta. Crystal., 23, 334 (1967)
37. A. P. Alivisatos et al., J.Am Chem. Soc. 122, 12700, (2000)
38. http://www.ndhu.edu.tw/~nano/labtext/DSSC lab.pdf
39. Y. Xia and P. Yang, Adv. Mater. 15, 353, (2003)
40. S. G. Im, K. Karen, Gleason, "Solvent-free Modification of Surfaces with Polymers: The Case for Initiated and Oxidative Chemical Vapor Deposition (CVD)" J. AlchE, 57, 2, (2011)
41. S. O' Brien, M. Çopuroglu, P. Tassie, M. G. Nolan, J. A. Hamilton, I. P. L. Pereira, R. Martins, E. Fortunato, Martyn and E. Pemble, 「The effect of dopants on the morphology, microstructure and electrical properties of transparent zinc oxide films prepared by the sol-gel method」 Thin Solid Films, 4, 29385 (2011)
42. P. Gamazo, S. A. Bea, M. W. Saaltink, J. Carrera and C. Ayora, 「Modeling the interaction between evaporation and chemical composition in a natural saline system」 Journal of Hydrology 401 154-164 (2011)
43. C. Ruan, M. Paulose and O. K. Varghese, 「Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte」 J. Phys. B, 109, 15754 (2005)
44. A. Ghicov, H. Tsuchiya, J. M. Macak, and P. Schmuki, 「Titanium oxide nanotube prepared in phosphate electrolytes」 Electrochem. Commun., 7, 505 (2005)
45. H. Tsuchiya, J. M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirot-na, and P. Schmuki, 「Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes」 Electrochem. Commun., 7, 576 (2005)
46. J. M. Macak, K. Sirotna, and P. Schmuki, 「Self-organized porous titanium oxide prepared in Na2SO4-NaF electrolytes」 Electrochim. Acta, 50, 3679 (2005)
47. L. V. Taveira, J.M. Macak and H. Tsuchiya, 「Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F/(NH4)2SO4 Electrolytes」 J. Electrochem. Soc., 152, B405 (2005)
48. D. Gong, C. A. Grimes and O. K. Varghese, 「Titanium oxide nanotube arrays prepared by anodic oxidation」 J. Mater. Res., 16, 3331 (2001)
49. K. Byrappa and M. Yoshimura, 「Handbook of Hydrothermal Tehnology, 1st Ed」 Noyes Publications (2001)
50. T. Kasuga, M. Hiramatsu and A. Hoson, 「Formation of Titanium Oxide Nanotube」 Langmuir, 14, 3160 (1998)
51. C. H. Sun, N. X. Wang, S. Y. Zhou and X. J.Hu, 「Preparation of self-supporting hierarchical nanostructured anatase/rutile composite TiO2 film」 Chem. Commun., 3293 (2008)
52. P. Hoyer, 「Formation of a Titanium Dioxide Nanotube Array」 Langmuir, 12, 1411 (1996)
53. W. Z. Zhong, S. K. Hua, and E. W. Shi. 「The structure and morphology of polar crystal」 J. Synthetic Crystals, 20, 350 (1991)
54. W. Z. Zhong, G. Z. Liu and E. W. Shi, 「Growth Units and Formation Mechanism of the Crystals under Hydrothermal Conditions」 Sci. China, B, 37, 1288 (1994)
55. P. Hartman, and W. G. Perdok, 「On the Relations Between Structure and Morphology of Crystals. I」 Ata Cryst., 8, 49 (1955)
56. P. Hartman, and W. G. Perdok, 「On the Relations Between Structure and Morphology of Crystals. II」 Ata Cryst., 8, 49 (1955)
57. P. Hartman, and W. G. Perdok, 「On the Relations Between Structure and Morphology of Crystals. III」 Ata Cryst., 8, 49 (1955)
58. M. Abd-Lefdil, R. Diaz, H. Bihri, M. Ait Aouaj and F. Rueda, 「Preparation and characterization of sprayed FTO thin films」 Eur. Phys. J. Appl. Phys., 38, 217 (2007)
59. C. J. Howard, T. M. Sabine and F. Dickson, 「Structural and thermal parameters for rutile and anatase」 Acta Crystallogr. B, 47, 462 (1991)