| 研究生: |
吳佳璇 Wu, Chia-Hsuan |
|---|---|
| 論文名稱: |
超分子結構奈米銀膠體的製備與特性探討 Fabrication and Characterization of Silver Nanoparticles Embedded in Supramolecular Organogels |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 自組裝 、超分子凝膠 、氫鍵 、模板 、奈米銀粒子 、液晶 |
| 外文關鍵詞: | self-assembly, supramolecular gels, hydrogen bond, matrices, silver nanoparticles, liquid crystals |
| 相關次數: | 點閱:92 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,小分子凝膠被廣泛作為基質,透過凝膠與無機物的二次作用力,合成出各種不同結構的複合材料,如螺旋、纖維和絲狀等。此種新穎的有機-無機材料,深受化學界重視。為了合成出此種新穎的複合材料,我們研究合成出光學活性凝膠體分子(cholesteryl-pyridine-carbamate, CPC),將其分子設計上導入pyridine基團、膽固醇基團與胺酯基,藉由分子間的二次力鍵結,誘導CPC分子在有機溶劑中形成超分子凝膠體。由SEM與TEM結果顯示,此CPC分子可自組裝成奈米纖維進而組織成三維網絡的超分子凝膠(supramolecular gel);透過XRD與分子模擬程式分析,說明超分子有機凝膠以pyridine基團及胺酯基為重疊作錯位排列。並利用FTIR與變溫1H-NMR証實分子間氫鍵和凡德瓦力為凝膠形成的主要作用力。透過凝膠化測驗可得知最小臨界凝膠濃度。進一步的以超分子凝膠為基質(matrix),利用分子上的孤對電子對與銀離子產生螯合作用,以光化學反應還原吸附在凝膠纖維上的奈米銀粒子,使形成三維網絡的奈米銀膠。其次,凝膠分子上的pyridine 基團能與sebacic acid 形成氫鍵錯合物,經DSC、POM證實其具有熱變性液晶性質。
關鍵字:自組裝、超分子凝膠、氫鍵、模板、奈米銀粒子、液晶。
Low-molecular-weight-gelators (LMWGs) have recently been used as a matrix to construct a kind of composite materials of different shapes or structures such as helices, fibers, tapes or tubes through the secondary force interaction between gelators and inorganic materials. In order to develop this kind of novel composite materials, we synthesized and characterized the novel chiral molecule cholesteryl-pyridine-carmbamate (CPC) containing pyridine, cholesteryl and urethane group. Supramolecular organogels formed due to the secondary forces between CPC molecules and solvents. From the results of SEM and TEM analysis, self-assembly of CPC molecules form highly ordered nanofibers. Further aggregation of the ordered constructions forms 3D entangled network. XRD and molecular simulation show that arrangement of supramolecular organogel is mainly through the overlap of pyridine and urethane groups. Results of FTIR and thermal changeable 1H-NMR show that intermolecular hydrogen bond and van der Waals forces are the key factors for the formation of gels in DMSO. Furthermore, supramolecular gels were used as polymer matrices to coordinate silver ions. Silver nanoparticles embedded self-assembled nanofibers were further fabricated via photoreduction of silver ions. CPC forms complex with sebacic acid through hydrogen bond between pyridine and carboxylic group. Thermotropic liquid crystal phases of the complex were confirmed using DSC and POM analysis.
Keywords:self-assembly, supramolecular gels, hydrogen bond, matrices,silver nanoparticles, liquid crystals.
[1] J. M. Lehn, “upramolecular Chemistry-Scope and Perspectives Molecules-Supermolecules-Molecular Devices”, Nobel Lecture, 27, 89 (1987).
[2] 楊吉水, “超分子化學”, Chemistry, The Chinese Chemistry Society, Taipei, 62, 11 (2004).
[3] 邱泰翔,“環糊精-單體包容錯合物自組裝集合體及所形成螺旋高分子之製備及特性探討”,國立成功大學化學工程研究所碩士論文, (2008)。
[4] 陳玟婷,“光學活性有機凝膠體之超分子自組裝與特性探討”,國立成功大學化學工程研究所碩士論文 (2011)。
[5] G. M. Whitesides, “Beyond Molecules: Self-assembly of Mesoscopic and Macroscopic Components”, Proc. Natl. Acad. Sci., 99, 4769 (2002).
[6] G. M. Whitesides, and B. Grzybowski, “Self-Assembly at All Scales, Science”, 295, 2418 (2002).
[7] K. E. Schwiebert, J. C. MacDonald, and G. M. Whitesides, “Engineering the Solid State with 2-Benzimidazolones”, J. Am. Chem. Soc., 118, 4018 (1996).
[8] L. S. Mende, R. H. Friend, and J. D. MacKenzie, “Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics”, Science, 293, 1119 (2001).
[9] E. L. Thomas, “The ABCs of Self-Assembly”, Science, 286, 1307 (1999).
[10] S. Forster, “From Self-Organizing Polymers to Nanohybrid and Biomaterials”, Angew. Chem., Int. Ed., 41, 688 (2002).
[11] D. Chapman, “Micelles, Monolayers and Biomembranes”, Wiley Liss, New York, p479 (1995).
[12] G. M. Whitesides, “Patterned Self-Assembled Monolayers and Meso-Scale Phenomena”, Acc. Chem. Res., 28, 219 (1995).
[13] V. Grantcharova, D. Baker, and A. L. Horwich, “Mechanisms of Protein Folding”, Curr. Opin. Struct. Biol., 11, 70 (2001).
[14] H. Nabika, B. Takimoto, and K. Murakoshi, “Molecular Separation in The Lipid Bilayer Medium: Electrophoretic and Self-spreading Approaches”, Anal. Bioanal. Chem., 391, 2497 (2008).
[15] N. M. Sangeetha, and U. Maitra, “Supramolecular Gels: Functions and Uses”, Chem. Soc. Rev., 34, 821 (2005).
[16] 黃明華、牟中原,科學月刊雜誌社.金台灣資訊事業有限公司。
04, 160 (1983) .
[17] 李俊賢,“含N, N'-二苯吡啶醯胺凝膠分子其自組裝行為硏究”,國立臺灣師範大學化學研究所碩士論文 (2009)。
[18] J. C. Leroux, “Organogels, and Their Use in Drug Delivery-A review”, J. Controlled Release, 125, 179 (2008).
[19] 呂政錡,“含Urea基團Triazine與Triarylamine衍生物之新型凝膠分子於不同溶劑下凝集效應與光學性質影響之探討”,國立臺灣科技大學高分子工程研究所博士論文 (2008)。
[20] S. Banerjee , R. K. Das, and U. Maitra, “Supramolecular Gels ‘In Action’ ”, J. Mater. Chem., 19, 6649 (2009).
[21] M. Zinic, F. Vogtle, and F. Fages, “Cholesterol-Based Gelators”, Top. Curr. Chem., 256, 39 (2005).
[22] K. Murata, M. aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komorti, F. Ohseto, K. Ueda, and S. Shinkai, “Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation”, J. Am. Chem. Soc., 116, 6664 (1994).
[23] K. J. C. van Bommel, A. Friggeri, and S. Shinkai, Arianna Friggeri, and Seiji Shinkai, “Organic Templates for the Generation of Inorganic Materials”, Angew. Chem., Int. Ed., 42, 980 (2003).
[24] Q. T. Liu, Y. L. Wang, W. Li, and Wu, LX, “Structural Characterization and Chemical Response of a Ag-Coordinated Supramolecular Gel”, Langmuir, 23, 8217 (2007).
[25] K. Sugiyasu, N. Fujita, M. Takeuchi, S. Yamada, and S. Shinkai, “Proton-sensitive Fuorescent Organogels”, Org. Biomol. Chem., 1, 895 (2003).
[26] J. M. Lehn, M. Mascal, and J. Fischer, “Molecular Recognition directed Self-assembly of Ordered Supramolecular Strands by Cocrystallization of Complementary Molecular Components”, Chem. Commun., 479 (1990).
[27] Y. P. Wu, S. Wu, X. J. Tian, X. Wang, W. X. Wu, G. Zou, and Q. J. Zhang, “Photoinduced Reversible Gel–sol Transitions of Dicholesterol-linked Azobenzene Derivatives through Breaking and Reforming of Van Der Waals Interactions”, Soft Matter, 7, 167 (2011).
[28] M. Kimura, S. Kobayashi, T. Kuroda, K. Hanabusa, and H. Shirai, “Assembly of Gold Nanoparticles into Fibrous Aggregates Using Thiol-Terminated Gelators”, Adv. Mater., 4, 16 (2004).
[29] M. Kimura, S. Kobayashi, T. Kuroda, K. Hanabusa, and H. Shirai , “Self-Assembled Helical Nanofibers Made of Achiral Molecular Disks Having Molecular Adapter”, Chem. Mater., 22, 5732 (2010).
[30] M. Constantinos and D. Tsiourvas, “Thermotropic Liquid Crystals Formed by Intermolecular Hydrogen Bonding Interactions”, Angew. Chem., Int. Ed., 34 , 1696 (1995).
[31] H. Hiroshl, Y. Yoshlro, Y. Akio, and K. Atsuhiro, “Photoreduction of Silver Ion in Aqueous and Alcoholic Solutions”, J. Phys. Chem., 80, 25 (1976).
[32] J. Guo, F. Chen, Z. Qu, H. Yang, and J. Wei , Electrothermal Switching “Characteristics from a Hydrogen-Bonded Polymer Network Structure in Cholesteric Liquid Crystals with a Double-Handed Circularly Polarized Light Reflection Band”, J. Phys. Chem. B, 115, 861 (2011).
[33] M. Llusar and C. Sanchez, “Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators”, Chem. Mater., 20, 782 (2008).
[34] J. H. Jung, M. Park, and S. Shinkai, “Fabrication of Silica Nanotubes by Using Self-assembled Gels and Their Applications in Environmental and Biological Feld”s, Chem. Soc. Rev., 39, 4286 (2010).
[35] B. Escuder, F. Rodrı´guez-Llansola, and J. F. Miravet, “Supramolecular Gels as Active Media for Organic Reactions and Catalysis”, New J. Chem., 34, 1044 (2010).
[36] J. Liu, J. Yan, X. Yuan, K. Liu, J. Peng, and Y. Fang, “A novel low-molecular-mass gelator with a redox active ferrocenyl group:Tuning Gel Formation by Oxidation”, J. Colloid Interface Sci., 318, 397 (2008).
[37] A. Kishimura, T. Yamashita, and T. Aida, “Phosphorescent Organogels via “Metallophilic” Interactions for Reversible RGB-Color Switching”, J. Am. Chem. Soc., 127, 179 (2005).