簡易檢索 / 詳目顯示

研究生: 李如媛
Lee, Ju-Yuan
論文名稱: 非接觸式電激磁同步馬達高速之激磁電流控制策略
Current Control Strategy in High Speed Region of Contactless Electrically Excited Synchronous Motor
指導教授: 蔡明祺
Tsai , Mi-Ching
黃柏維
Huang , Po-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 100
中文關鍵詞: 非接觸式激磁電路電激磁同步馬達激磁電流控制
外文關鍵詞: Contactless excitation circuit, Electrically Excited Synchronous Motor, Excitation current control, Field Weakening Control
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電動車輛對高效率馬達需求的增加,傳統永磁同步馬達因稀土材料依賴性、高溫性能限制及成本問題而受限,電激磁同步馬達(EESM)憑藉其可調節磁場的特性成為理想替代方案。
    首先建立了EESM的數學模型,為後續控制策略設計提供理論基礎,提出對於電激磁同步馬達在不同轉速區域之控制策略,針對低速時採用MTPA實現低速高轉矩特性,以及高速時的弱磁控制,且針對高速區負載變動,提出一種動態調整激磁電流與d-q軸電流的轉矩補償策略,確保馬達在不同負載條件下的最佳轉矩輸出。此外,本研究分析非接觸式激磁電路架構,探討傳統滑環與非接觸式供電之差異,並模擬旋轉變壓器之電磁耦合對馬達響應之特性。
    最後將非接觸式電激磁同步馬達整體系統建立於MATLAB/Simulink中進行模擬驗證,分析馬達的動態行為與響應,並透過設計軟體JMAG/FEA匯出之馬達相關參數驗證本文所提出之數學模型,以及激磁電流控制策略。

    With the increasing demand for high-efficiency motors in electric vehicles (EVs), the conventional permanent magnet synchronous motor (PMSM) faces limitations due to its reliance on rare-earth materials, poor high-temperature performance, and high cost. The electrically excited synchronous motor (EESM), with its controllable magnetic field, has emerged as a promising alternative. This thesis first establishes a comprehensive mathematical model of the EESM, providing as a theoretical foundation for subsequent control strategy development. A control strategy accommodating different speed regions is then proposed: maximum torque per ampere (MTPA) is applied at low speeds to achieve high torque, while field weakening is employed at high speeds. To further enhance high-speed performance, a torque compensation strategy is introduced for high-speed regions to dynamically adjust the excitation current and the d-q axis currents in response to load variations, ensuring optimal torque output across different operating conditions.
    In addition, a contactless excitation circuit is analyzed and compared with conventional slip-ring excitation, and the cross-coupling effects of the rotary transformer is modeled to evaluate its effect on motor performance. The proposed system is validated through MATLAB/Simulink simulations, with motor parameters obtained from JMAG/FEA. Results confirm that the mathematical model accurately reflects motor behavior and that the proposed excitation current control strategy ensures stable operation and improved torque performance under varying speed and load conditions.

    中文摘要 I Abstract II 致謝 XIII 表目錄 XVIII 圖目錄 XIX 符號表 XXII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 文獻回顧 3 1.3.1 他激式直流有刷馬達控制 3 1.3.2 電激磁同步馬達控制 5 1.3.3 非接觸式激磁電路 7 1.4 論文架構 8 第二章 旋轉變壓器 10 2.1 旋轉變壓器運作原理 10 2.2 旋轉變壓器數學模型 10 2.3 旋轉變壓器數學方塊圖 12 2.4 非接觸式激磁電路架構 13 第三章 電激磁同步馬達 15 3.1 電激磁同步馬達結構 15 3.2 座標軸轉換 16 3.3 建立電激磁同步馬達數學模型 18 3.3.1 電激磁同步馬達磁交鏈方程式 18 3.3.2 電激磁同步馬達電壓方程式 25 3.3.3 電激磁同步馬達轉矩與功率方程式 27 3.4 電激磁同步馬達控制方塊圖 28 第四章 激磁電流控制策略 30 4.1 他激式直流有刷馬達激磁電流控制法 30 4.2 電激磁同步馬達之控制策略 31 4.2.1 永磁同步馬達弱磁控制 31 4.2.2 電激磁同步馬達激磁電流控制策略 33 4.3 系統控制策略架構 39 4.4 電流迴路控制器設計 39 4.4.1 定子電流迴路控制器 39 4.4.2 轉子電流迴路控制器 41 4.5 速度迴路控制器設計 43 第五章 模擬結果 45 5.1 降低磁場對於不同馬達特性之模擬 45 5.1.1 他激式直流有刷馬達激磁電流控制法 45 5.1.2 永磁同步馬達弱磁控制 45 5.1.3 電激磁同步馬達模擬弱磁控制 46 5.2 驗證電激磁同步馬達數學模型 50 5.2.1 馬達規格 50 5.2.2 EESM與JMAG FEA驗證 53 5.3 驗證EESM激磁電流控制策略 56 5.3.1 激磁電流與d軸電流搭配控制 56 5.3.2 激磁電流控制策略 57 5.4 非接觸式激磁電路模擬 65 5.4.1 非接觸式與接觸式之馬達響應 66 第六章 結論與未來建議方向 67 6.1 結論 67 6.2 未來建議方向 68 參考文獻 69

    [1] Trading Economics, “Neodymium Rare Earth”, 2025. https://tradingeconomics.com/commodity/neodymium
    [2] Dr.-Ing. Gerd Rösel, Nico Daun, Artur Giedymin, Dragan Stojkovic, Matthias Töns, “Externally Excited Synchronous Machine(EESM) As Main and Auxilary Drive”, Vitesco, 2023.
    [3] G. Pitron,稀有金屬戰爭,天下文化,2020.
    [4] H. Krupp and A. Mertens, "Rotary Transformer Design for Brushless Electrically Excited Synchronous Machines," 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 2015.
    [5] R. Paduraru, E. Rosu, M. Gaiceanu, T. Munteanu, T. Dumitriu and C. Dache, "Linear control of DC motor drive with field weakening," 2010 3rd International Symposium on Electrical and Electronics Engineering (ISEEE), Galati, Romania, 2010.
    [6] Alim, A. & Talukdar, Md. “Control of Separately Excited Dc Motor”. Journal of Electrical and Electronics Engineering. 4. 7-10, 2011.
    [7] Xie, Lihong & Yuan, Xibo & Wang, Jun & Mellor, P.H. “Design Optimization of a Rotary Transformer Converter for the Excitation of Electric Machines.”, 5846-5852. 10.1109/ECCE53617.2023.
    [8] Zhang, Yuanzhi et al. “Design, Manufacture, and Test of a Rotary Transformer for Contactless Power Transfer System, ” IEEE Transactions on Magnetics, vol. 58, Issue 2 , 2022.
    [9] Junfei Tang, “Design and Control of Electrically Excited Synchronous Machines for Vehicle Applications, ” Dissertation, Division of Electric Power Engineering Department of Electrical Engineering Chalmers University of Technology Gothenburg, Sweden 2021.
    [10] J. M. Retif, X. Lin-Shi, A. M. Llor, and F. Morand, “New hybrid direct-torque control for a winding rotor synchronous machine,” 2004 IEEE 35th Annual Power Electronics Specialists Conference, vol. 2, pp. 1438–1442, 2004.
    [11] Y. Kim and K. Nam, "Copper-Loss-Minimizing Field Current Control Scheme for Wound Synchronous Machines," in IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 1335-1345, Feb. 2017.
    [12] Wafeek Bader, “Control of Electrically Excited Synchronous Motor, ”Department of Information Engineering Degree, University Degli Studi Di Padova, 2024.
    [13] Aleksandr Mirlenko, “Control of Electrically Excited Synchronous Motor in the Field Weakening Range,” Thesis, Program in Electrical Engineering, School of Energy Systems, Lappeenranta University of Technology, 2017.
    [14] Gerhard Gaugl, “Torque accuracy optimization for an EESM, ”2023.
    [15] J. Tang, Y. Liu and N. Sharma, "Modeling and Experimental Verification of High-Frequency Inductive Brushless Exciter for Electrically Excited Synchronous Machines," IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4613-4623, Sept.-Oct. 2019.
    [16] 黃思惟,「旋轉變壓器應用於繞線式轉子馬達之設計與分析」,碩士論文,國立成功大學機械工程學系,2023。.
    [17] E. M. Illiano, Design of a Highly Efficient Brushless Current Excited Synchronouos Motor for Automotive Purposes. Zürich, Switzerland: ETH Zürich, 2014.
    [18] E. M. Illiano, Design of a Brushless Separately Excited Synchronous Motor. Sennwald, Switzerland: BRUSA Elektronik AG, 2014.
    [19] C. Stancu, T. Ward, K. M. Rahman, R. Dawsey, and P. Savagian, “Separately excited synchronous motor with rotary transformer for hybrid vehicle application,” IEEE Trans. Ind. Appl., vol.54, no.1, pp. 223–232, Jan.-Feb. 2018.
    [20] Y. Liu, D. Pehrman, O. Lykartsis, J. Tang, and T. Liu, “High frequency ex citer of electrically excited synchronous motors for vehicle applications,” 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne, 2016.
    [21] J. Tang, Y. Liu, Y. Rastogi, N. Sharma and T. Shukla, “Study of voltage spikes and temperature rise in power module based integrated converter for 48 V 20 kW electrically excited synchronous machines,” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC) , San Antonio, TX, 2018.
    [22] N. Jiao, W. Liu, Z. Zhang, T. Meng, J. Peng, and Y. Jiang, “Field current estimation for wound-rotor synchronous starter–generator with asynchronous brushless exciters,” IEEE Trans. Energy Convers., vol. 32, no. 4, pp. 1554–1561, Dec. 2017
    [23] J. Dai, S. Hagen, D. C. Ludois, and I. P. Brown, “Synchronous generator brushless field excitation and voltage regulation via capacitive coupling through journal bearings,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3317–3326, Jul./Aug. 2017.
    [24] Mohamad Koteich, Gilles Duc, Abdelmalek Maloum, Guillaume Sandou, Observability of Sensorless Electric Drives, 2016. 10.48550/arXiv.1602.04468.
    [25] 張啟洋,「交流馬達建模與分析」,碩士論文,國立成功大學機械工程學系,2023。
    [26] Jung, Sung-Yoon & Hong, Jinseok & Nam, Kwanghee, “Current Minimizing Torque Control of the IPMSM Using Ferrari’s Method. Power Electronics, ” IEEE Transactions on. 28. 5603-5617. 10.1109/TPEL.2013.
    [27] S. K. Sul, “Control of Electric Machine Drive Systems”, 2011.
    [28] 袁雷,「現代永磁同步電機控制原理及 MATLAB 仿真」,北京航空航天大學 出版社,2016.
    [29] G. Pellegrino, E. Armando, P. Guglielmi, “Modeling and Control of Synchronous Machines for EV Drives”, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE