簡易檢索 / 詳目顯示

研究生: 鄭久駿
Cheng, Chiu-Chun
論文名稱: 具可調電壓變化率之 GaN HEMT 閘極驅動器
Programmable Voltage Slew Rate Gate Driver for GaN HEMT
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 111
中文關鍵詞: 主動式閘極驅動器氮化鎵瞬時脈波寬度調變電磁干擾電壓電流變化率
外文關鍵詞: Active gate driver, GaN HEMT, TPWM, EMI, Slew rate control
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 寬能隙元件具備高速切換與低損耗特性,然而高電壓與電流變化操作下易引發電磁干擾、誤導通與電壓尖峰等問題,影響系統穩定性。為改善此狀況,本研究提出一套結合瞬時脈波寬度調變技術之主動式閘極驅動器,可動態調整 Cascode GaN HEMT 的開關速度,兼顧切換效率與電磁干擾抑制。本論文首先探討多種主動式閘極驅動方法後,選擇可變閘極電壓法為實作基礎,並整合瞬時脈波寬度調變控制策略與簡易負電壓電路,以提升關斷期間穩定性。透過雙脈衝測試電路進行實測,並以導通能量、切換損耗與頻域分析等指標進行性能評估。實驗結果顯示,脈波寬度調變控制方法可有效調整電壓變化範圍,並具備良好的電磁干擾抑制能力。
    綜合而言,本論文所提出之主動式閘極驅動器架構具有良好調變能力與系統相容性,為未來高頻、高效率功率轉換系統之驅動電路設計提供一具彈性與實用性的參考方案。

    Wide Bandgap (WBG) devices, offer fast switching and low power loss. However, their high dv/dt and di/dt characteristics can result in electromagnetic interference (EMI), false turn-on events, and voltage overshoot. To address these challenges, this research proposes an Active Gate Driver (AGD) employing Temporal Pulse Width Modulation (TPWM) to dynamically control the voltage slew rate during switching in Cascode GaN HEMTs. The goal is to achieve an optimal balance between switching efficiency and EMI performance.
    The proposed driver is based on the Variable Gate Voltage Mechanism(VGVM) and integrates Temporal PWM (TPWM) control along with a negative voltage shifter to ensure a stable turn-off state. Experimental validation using double-pulse testing demonstrates effective dv/dt control and significantEMI reduction. Overall, the proposed AGD presents a flexible and practicalsolution for high-speed power conversion systems

    摘要 I Abstract II SUMMARY III 誌謝 XVII 目錄 XVIII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 4 第二章 主動式閘級驅動器介紹 6 2.1 寬能隙元件比較與驅動要點 6 2.1.1 米勒電容電流問題 6 2.1.2 電磁干擾(EMI)影響 11 2.2 GaN HEMT架構與slew rate變因 13 2.3 主動式閘極驅動器與驅動方法介紹 17 2.3.1 可變閘極電阻方法 18 2.3.2 可變輸入電容方法 19 2.3.3 可變閘極電流方法 20 2.3.4 可變閘極電壓方法 23 2.3.5 各主動式閘極驅動方法比較 25 2.4 瞬時脈波寬度調變方法模擬分析 26 2.4.1 瞬時脈波寬度調變方法對導通暫態的影響 27 2.4.2 瞬時脈波寬度調變方法對截止暫態的影響 30 第三章 瞬時脈波寬度調變閘極驅動器架構與設計 32 3.1 主動式閘極驅動器電路架構 32 3.2 負電壓電路設計 37 3.3 瞬時脈波寬度調變控制(TPWM Control)測試 39 3.4 實體電路規劃與設計考量 42 第四章 TPWM閘極驅動器實驗結果分析 52 4.1 前言 52 4.2 V_int對slew rate之影響 53 4.3 頻率變化對slew rate之影響 58 4.4 Duty 變化對slew rate之影響 60 4.5 導通之閘極電荷變化 64 4.6 TPWM頻譜分析 66 4.6.1 V_ds與I_ds的快速傅立葉變換(FFT) 67 4.6.2 驅動電路電磁干擾分析 69 4.7 驅動方法效果比較 74 第五章 結論與未來展望 77 5.1結論 77 5.2未來展望 78 參考文獻 80

    [1] J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, and J. Rebollo, "A Survey of Wide Bandgap Power Semiconductor Devices," IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2155-2163, 2014, doi: 10.1109/TPEL.2013.2268900.
    [2] M. LaPedus, "SiC Demand Growing Faster Than Supply," ed, 2019.
    [3] ROHM EcoGaN. [Online]. Available: https://www.rohm.com.tw/support/gan-power-device.
    [4] "Wide Bandgap Semiconductors (SiC/GaN) - Infineon Technologies.," ed.
    [5] L. Balogh, Fundamentals of MOSFET and IGBT Gate Driver Circuits, 2018.
    [6] S. Jahdi, O. Alatise, J. A. O. Gonzalez, R. Bonyadi, L. Ran, and P. Mawby, "Temperature and Switching Rate Dependence of Crosstalk in Si-IGBT and SiC Power Modules," IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 849-863, 2016, doi: 10.1109/TIE.2015.2491880.
    [7] Y. Ren et al., "Voltage Suppression in Wire-Bond-Based Multichip Phase-Leg SiC MOSFET Module Using Adjacent Decoupling Con-cept," IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8235-8246, 2017, doi: 10.1109/TIE.2017.2714149.
    [8] R. Stark, A. Tsibizov, I. Kovacevic-Badstuebner, T. Ziemann, and U. Grossner, "Gate Capacitance Characterization of Silicon Carbide and Silicon Power mosfets Revisited," IEEE Transactions on Power Elec-tronics, vol. 37, no. 9, pp. 10572-10584, 2022, doi: 10.1109/TPEL.2022.3164360.
    [9] S. Yin et al., "Gate driver optimization to mitigate shoot-through in high-speed switching SiC half bridge module," in 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, 9-12 June 2015 2015, pp. 484-491, doi: 10.1109/PEDS.2015.7203388.
    [10] S. Zhao, X. Zhao, Y. Wei, Y. Zhao, and H. A. Mantooth, "A Review of Switching Slew Rate Control for Silicon Carbide Devices Using Active Gate Drivers," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4096-4114, 2021, doi: 10.1109/JESTPE.2020.3008344.
    [11] A. P. Camacho, V. Sala, H. Ghorbani, and J. L. R. Martinez, "A Novel Active Gate Driver for Improving SiC MOSFET Switching Trajectory," IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 9032-9042, 2017, doi: 10.1109/TIE.2017.2719603.
    [12] Y. Lobsiger and J. W. Kolar, "Closed-loop IGBT gate drive featuring highly dynamic di/dt and dv/dt control," in 2012 IEEE Energy Con-version Congress and Exposition (ECCE), 15-20 Sept. 2012 2012, pp. 4754-4761, doi: 10.1109/ECCE.2012.6342173.
    [13] L. Jih-Sheng, H. Xudong, E. Pepa, C. Shaotang, and T. W. Nehl, "In-verter EMI modeling and simulation methodologies," IEEE Transac-tions on Industrial Electronics, vol. 53, no. 3, pp. 736-744, 2006, doi: 10.1109/TIE.2006.874427.
    [14] N. Oswald, P. Anthony, N. McNeill, and B. H. Stark, "An Experimental Investigation of the Tradeoff between Switching Losses and EMI Generation With Hard-Switched All-Si, Si-SiC, and All-SiC Device Combinations," IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2393-2407, 2014, doi: 10.1109/TPEL.2013.2278919.
    [15] W. Perdikakis, M. J. Scott, K. J. Yost, C. Kitzmiller, B. Hall, and K. A. Sheets, "Comparison of Si and SiC EMI and Efficiency in a Two-Level Aerospace Motor Drive Application," IEEE Transactions on Transpor-tation Electrification, vol. 6, no. 4, pp. 1401-1411, 2020, doi: 10.1109/TTE.2020.3010499.
    [16] 蘇建豪, "疊接式氮化鎵高電子遷移率電晶體之參數分析與振鈴抑制," 碩士, 電機工程學系, 國立成功大學, 台南市, 2018. [Online]. Available: https://hdl.handle.net/11296/xw8rj2
    [17] M. Rodríguez, A. Rodríguez, P. F. Miaja, D. G. Lamar, and J. S. Zúniga, "An Insight into the Switching Process of Power MOSFETs: An Im-proved Analytical Losses Model," IEEE Transactions on Power Elec-tronics, vol. 25, no. 6, pp. 1626-1640, 2010, doi: 10.1109/TPEL.2010.2040852.
    [18] S. Y. Sim, J. Jiang, and C. Huang, "A Half-Bridge GaN Driver with Real-Time Digital Calibration for VGS Ringing Regulation and Slew-Rate Optimization in 180nm BCD," in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), 27 May-1 June 2022 2022, pp. 1492-1496, doi: 10.1109/ISCAS48785.2022.9937216.
    [19] B. Sun, R. Burgos, X. Zhang, and D. Boroyevich, "Active dv/dt con-trol of 600V GaN transistors," in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 18-22 Sept. 2016 2016, pp. 1-8, doi: 10.1109/ECCE.2016.7854818.
    [20] S. Zhao et al., "Adaptive Multi-Level Active Gate Drivers for SiC Power Devices," IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1882-1898, 2020, doi: 10.1109/TPEL.2019.2922112.
    [21] S. Kawai, T. Ueno, H. Ishikuro, and K. Onizuka, "An Active Slew Rate Control Gate Driver IC With Robust Discrete-Time Feedback Tech-nique for 600-V Superjunction MOSFETs," IEEE Journal of Sol-id-State Circuits, vol. 58, no. 2, pp. 428-438, 2023, doi: 10.1109/JSSC.2022.3201270.
    [22] S. Acharya, X. She, F. Tao, T. Frangieh, M. H. Todorovic, and R. Datta, "Active Gate Driver for SiC-MOSFET-Based PV Inverter With En-hanced Operating Range," IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1677-1689, 2019, doi: 10.1109/TIA.2018.2878764.
    [23] G. Engelmann, T. Senoner, and R. W. D. Doncker, "Experimental in-vestigation on the transient switching behavior of SiC MOSFETs using a stage-wise gate driver," CPSS Transactions on Power Electronics and Applications, vol. 3, no. 1, pp. 77-87, 2018, doi: 10.24295/CPSSTPEA.2018.00008.
    [24] Infineon Technology, “EiceDRIVERTM 1ED32xxMC12H Two-level slew-rate control (2L-SRC)” Datasheet, April 2021.
    [25] Z. Zeng and X. Li, "Comparative Study on Multiple Degrees of Freedom of Gate Drivers for Transient Behavior Regulation of SiC MOSFET," IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8754-8763, 2018, doi: 10.1109/TPEL.2017.2775665.
    [26] K. Yamaguchi, K. Katsura, T. Yamada, and Y. Sato, "Comprehensive evaluation of gate boost driver for SiC-MOSFETs," in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 18-22 Sept. 2016 2016, pp. 1-8, doi: 10.1109/ECCE.2016.7854951.
    [27] A. Marzoughi, R. Burgos, and D. Boroyevich, "Active Gate-Driver With dv/dt Controller for Dynamic Voltage Balancing in Se-ries-Connected SiC MOSFETs," IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2488-2498, 2019, doi: 10.1109/TIE.2018.2842753.
    [28] A. Schindler, B. Koeppl, B. Wicht, and J. Groeger, "10ns Variable current gate driver with control loop for optimized gate current timing and level control for in-transition slope shaping," in 2017 IEEE Ap-plied Power Electronics Conference and Exposition (APEC), 26-30 March 2017 2017, pp. 3570-3575, doi: 10.1109/APEC.2017.7931210.
    [29] W. F. H. Hüsken, "Current Source Gate Drivers oost the Turn-On Per-formance of IGBT," 2018.
    [30] S. Zhao, X. Zhao, A. Dearien, Y. Wu, Y. Zhao, and H. A. Mantooth, "An Intelligent Versatile Model-Based Trajectory-Optimized Active Gate Driver for Silicon Carbide Devices," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 1, pp. 429-441, 2020, doi: 10.1109/JESTPE.2019.2922824.
    [31] H. C. P. Dymond, D. Liu, J. Wang, J. J. O. Dalton, and B. H. Stark, "Multi-level active gate driver for SiC MOSFETs," in 2017 IEEE En-ergy Conversion Congress and Exposition (ECCE), 1-5 Oct. 2017 2017, pp. 5107-5112, doi: 10.1109/ECCE.2017.8096860.
    [32] X. Yang, Y. Yuan, X. Zhang, and P. R. Palmer, "Shaping High-Power IGBT Switching Transitions by Active Voltage Control for Reduced EMI Generation," IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1669-1677, 2015, doi: 10.1109/TIA.2014.2347578.
    [33] S. Zhang et al., "Minimal Switching Loss Three-Stage Active Gate Driving Strategy Based on Dynamic dv/dt Switching Model for GaN HEMT," IEEE Transactions on Power Electronics, vol. 40, no. 3, pp. 4142-4155, 2025, doi: 10.1109/TPEL.2024.3501362.
    [34] S. S. Ahmad and G. Narayanan, "Double pulse test based switching characterization of SiC MOSFET," in 2017 National Power Electronics Conference (NPEC), 18-20 Dec. 2017 2017, pp. 319-324, doi: 10.1109/NPEC.2017.8310478.
    [35] B. Card, "Maximize SiC MOSFET Performance with Optimized Gate Drivers," ed, 2024.
    [36] ADC-SOC user manual.
    [37] TPH3206L 650V GaN FET PQFN Series.
    [38] L. Z. Peter B. Green, Gate drive for power MOSFETs in switching applications, 2022.
    [39] ANALOG DEVICES ADuM4121.
    [40] Isolator vs. Optocoupler Technology.
    [41] S. Sapre, Isolated Gate Drivers—What, Why, and How?, 2018.
    [42] "Common-Mode Transient Immunity," ed, 2020.
    [43] M. B. Wei Zhang, Common Mode Transient Immunity (CMTI) for Isolated Gate Drivers, 2018.
    [44] Murata NXJ1 SeriesIsolated 1W Single Output SM DC-DC Converters.
    [45] Texas Instruments LM2940x 1-A Low Dropout Regulator, 2014.
    [46] W. Choi, Switching Loss Estimation of High Voltage Power MOSFET in Power Factor Correction Pre-regulation, 2015.
    [47] O. Tanrıverdi and D. Yildirim, "Analog $dv/dt$ and $di/dt$ Controlled Gate Driver With Self-Triggered Hold-at-Zero Algorithm for High-Power IGBTs," IEEE Transactions on Power Electronics, vol. 39, no. 1, pp. 1184-1194, 2024, doi: 10.1109/TPEL.2023.3316260.
    [48] 蔡易霑, "碳化矽功率元件之主動式閘極驅動器設計," 碩士, 電機工程學系, 國立成功大學, 台南市, 2023. [Online]. Available: https://hdl.handle.net/11296/cz4ds3

    無法下載圖示 校內:2028-07-01公開
    校外:2028-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE