| 研究生: |
董景嘉 Tung, Chin-Chia |
|---|---|
| 論文名稱: |
黏性泥沙在振盪流中沉降過程之研究 Settling process of cohesive sediment under oscillation flow |
| 指導教授: |
黃煌煇
Hwung, Hwung-Hweng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 黏性泥沙 、沉降速度 、懸浮泥沙濃度 、振盪流 |
| 外文關鍵詞: | cohesive sediment, settling velocity, suspended sediment concentration, oscillation flow |
| 相關次數: | 點閱:175 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以實驗方式進行黏性泥沙在靜止水體與振盪流中之沉降行為研究,觀測黏性泥砂在沉降過程中隨著時間運動之濃度變化,並對沉降速度進行量測,以及比較靜態與動態沉降試驗之差異,並且探討不同條件下所產生之沉降行為差異,歸納其可能影響沉降行為之參數。
本研究運用於造波水槽內加裝隔板之方式,製造一類似U型管之空間,並且輔以造波系統在其一端推擠水體,達到所需之振盪流環境,並透過條件測試作業得振盪流條件之穩定範圍,總計進行五十七組沉降試驗,包含靜態條件與十八組振盪流條件與三種初始濃度條件之組合。試驗期間利用光學濁度計OBS於垂直深度上的排列來監測沉降過程的整體濃度衰減,運用沉降速度與懸浮泥沙濃度的相關性進行沉降速度之量化,並且使用超音波都卜勒流速儀ADV檢視區段內速度與擾動情形,引用雷諾擴散通量來量化其紊流擾動值。
藉由檢視不同條件間的濃度時序列、沉降速度時序列以及沉降速度與濃度之關係,本研究歸納出沉降行為與懸浮泥沙濃度相關外,亦受振盪流流速以及初始濃度兩參數之影響:振盪流流速參數將使濃度衰減趨勢變緩以及造成沉降速度下降,其最大沉降速度隨雷諾擴散通量增加而衰減之趨勢代表沉降行為受振盪流速度與懸浮泥沙濃度的紊流擴散所影響;初始濃度參數於靜態條件與低流速條件影響尚不顯著,當流速條件提高,沉降速度將隨初始濃度條件增加呈現衰減之趨勢。
This study investigated the settling process of cohesive sediment under static water and oscillation flow. Suspended sediment concentration and settling velocity were measured in the experiment. It is attempted to investigate the parameters which influence settling behavior under different experimental conditions.
The experiments were conducted in a wave-tank at Tainan Hydraulics Laboratory. Experimental setup was constructed by a U-tube-like space installing custom-made plates in wave-tank. Wave-maker was used to push water in wave flume and then generated oscillation flow. There are fifty-seven combinations of settling experiments which consisted of three initial concentration conditions and eighteen oscillation flow conditions, plus a static condition in this study. An array of OBS and an ADV were applied to measure the changes of concentration and velocity during settling process.
From the experiments, the results concluded that settling behavior was not only influenced by concentration, but also by both velocity and initial concentration. The velocity of oscillation flow would slow down the settling behavior resulting in decreased settling velocity. The maximum settling velocity decreases with Reynolds number also indicated the influence of velocity of oscillation flow. On the other hand, the influence of initial concentration was unobvious at static condition and low velocity condition. Nevertheless, the settling behavior revealed a significant difference under high velocity condition. Settling velocity decreased as initial concentration increasing.
Agrawal, Y.C. and Pottsmith, H.C., “Instruments for particle size and settling velocity observations in sediment transport”, Marine Geology 168, pp.89-114., 2000.
Burt, T.N., “Field settling velocities of estuary muds. In: Mehta”, A.J. (Ed.), Estuarine Cohesive Sediment Dynamics. Springer-Verlag, pp. 126e-50., 1986.
Eisma, E., Dyer, K.R., van Leussen, W., “The in-situ determination of the settling velocity of suspended fine-grained sediment e a review.”, In: Burt, N., Parker, R., Watrts, J. (Eds.), Cohesive Sediments. John Wiley and Sons., 1997.
Fugate, D. C. and C. T. Friedrichs., “Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST”, Continental Shelf Research, 22, pp.1867-1886., 2002.
Fugate, D. C. and C. T. Friedrichs., “Controls on suspended aggregate size in partially mixed estuaries”, Estuarine, Coastal and Shelf Science, 58, pp.389-404., 2003.
Ha, H. K., “Acoustic measurements of cohesive sediment transport: suspension to consolidation”, The Faculty of the School of Marine Science, The College of William and Mary in Virginia, 2008.
Ha, H. K., W. Y. Hsu, J.P.Y. Maa, Y.Y. Shao and C.W. Holland., “Using ADV backscatter strength for measuring suspended cohesive sediment concentration”, Continental Shelf Research, 29, pp.1310-1316., 2009.
Ha H. K., and J. P. Y. Maa., “Effects of suspended sediment concentration and turbulence on settling velocity of cohesive sediment”, Geosciences Journal, 14 (2), pp.163-171., 2010.
9. Kwon, J.I., “Simulation of Turbidity Maximums in the York River, Virginia. Ph.D. Dissertation”, Virginia Institute of Marine Science, College of William and Mary., 2005.
Kwon, J.I., Maa, J.P.-Y., Lee, D.-Y., “A preliminary implication of the constant erosion rate model to simulate turbidity maximums in the York River, Virginia, USA”, In: Maa, J.P.-Y., Sanford, L.P., Schoellhamer, D.H.(Eds.), Estuarine and Coastal Fine Sediment Dynamics e INTERCOH 2003. Elsevier, Amsterdam, pp. 321-344.,2006.
Mantovanelli, A. and P. V. Ridd., “Devices to measure settling velocities of cohesive sediment aggregates: A review of the in situ technology”, Journal of Sea Research, 56, pp.199~226., 2006.
Maa, J. P. Y. and J. I. Kwon., Short Communication. “Using ADV for cohesive sediment settling velocity measurements”, Estuarine, Coastal and Shelf Science, 73, pp. 351-354., 2007.
Mehta, A.J., “Characterization of cohesive sediment properties and transport processes in estuaries”, In: Mehta, A.J. (Ed.), Estuarine Cohesive Sediment Dynamics. Springer-Verlag, pp. 290-325., 1986.
Owen, M.W., “A detailed study of the settling velocities of silt flocs”, Hydraulic Research Report,INT 78., 1970
Owen, M.W., “The effect of turbulence on the settling velocities of silt flocs”, Proc. 14th Congres Of IAHR, Paris 4, pp. D4-1–D4-5., 1971.
Owen, M.W., “Determination of the Settling Velocities of Cohesive Muds”, Report No. IT 161, Hydraulic Research Station, Wallingford., 1976.
Scully, M.E., “The Interaction Between Stratification, Circulation, and Sediment Transport in a Partially-mixed Estuary”, Ph.D. thesis, College of William and Mary, Virginia, 148 p., 2005.
Scully, M. E. and C. T. Friedrichs., “Sediment pumping by tidal asymmetry in a partially mixed estuary”, Journal of Geophysical Researc, 112, C07028, pp. 1-12~12-12., 2007.
Winterwerp, J.C., Van Kesteren, W.G.M., “Introduction to the physics of cohesive sediments in the marine environment”, In: Developments in Sedimentology, 56. Elsevier, Amsterdam, 2004.
W. Y. Hsu, H. H. Hwung, T. J. Hsu, A. Torres-Freyermuth and R. Y. Yang, “An experimental and numerical investigation on wave-mud interactions”, Journal of Geophysical Research: Oceans, Volume 118, Issue 3, pp. 1126-1141., 2013.
You, Zai-Jin., “The effect of suspended sediment concentration on the settling velocity of cohesive sediment in quiescent water”, Ocean Engineering, 31, pp.1955~1965., 2004
黃鈺軒,「凝聚性沙質在水體沉降過程之研究」,國立成功大學水利及海洋工程研究所碩士論文,2009。
許文陽,「黏性泥沙動力特性之試驗與數值研究」,國立成功大學水利及海洋工程研究所博士論文,2012。