| 研究生: |
廖韋寧 Liao, Wei-Ning |
|---|---|
| 論文名稱: |
以科技接受模型探討台灣民眾對行動支付使用意願之研究 Using Technology Acceptance Model to Explore Taiwanese People’s Intention to Use Mobile Payment |
| 指導教授: |
黃瀞瑩
Huang, Ching-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 科技接受模型 、行動支付 、使用態度 、使用意願 |
| 外文關鍵詞: | Mobile payment, Intention to Use, Technology Acceptance Model |
| 相關次數: | 點閱:71 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨者技術進步,新科技漸漸地在改變消費者的生活型態。在行動裝置科技的進步下,智慧型手機成為人們生活中不可或缺的必需品。在行動商務的發展下,人們試者將錢包、實體信用卡置入至行動裝置中,使消費者能夠不攜帶實體貨幣或信用卡即可完成消費交易。近幾年來,台灣的行動支付商百家爭鳴,從國際知名品牌如Apple Pay, LINE Pay到本土品牌如街口支付、歐付寶等企業進入台灣市場競爭。各家企業透過整合行動裝置與合作商家,希望讓行動支付在台使用能提升消費者之交易效率。而根據資策會(2017)調查台灣民眾仍有七成以現金與信用卡為主要之交易方式,行動支付使用率仍偏低。因此,希望透過本研究探討影響台灣民眾對行動支付使用意願之因素,以協助提升推廣行動支付並使其於台灣普及。本研究以科技接受模型為研究架構,並加入知覺相容性、知覺信賴性與主流規範來擴展模型,以多方角度來深入探討影響消費者之因素。此外,加入數位原生與數位移民作為調節變數,透過分析結果以提出相關之建議予行動支付商,協助推動行動支付之普及。
研究結果發現,知覺相容性、知覺有效性、知覺易用性、知覺信賴性與主流規範皆與使用態度有顯著影響。而使用態度具有完全中介效果,因此在提升消費者對行動支付之使用意願中扮演一個重要的角色。在調節效果部分,研究結果發現數位身分具有調節效果,且數位移民較數位原生之調節效果強。因此,行動支付商可針對上述結果進行策略制定,且針對40歲以上之族群之需求留意。當滿足數位移民之需求時,其使用意願會較數位原生增加更多。
As technology advanced, the new technology gradually change the way of people live in the daily life. Because of the mobile device advanced, smartphone becomes indispensable objects in our daily life. Mobile payment is the new transaction way which binds the credit card or bank account in the mobile device. Therefore, people can purchase products or service without wallet and also be more convenient. In recent years, more and more mobile payment firms been entered into Taiwan. Each firms are dedicated to integrating mobile device and stores to make sure that their mobile payment can improve the efficiency in transaction. According to MIC (2017), people still use cash and credit card as their major payment method (70%), and the use of mobile payment still low. Hence, the purpose of the study is to explore the factors influencing the Taiwanese people’s willingness to use mobile payment. In research method, we use SEM to analyse the data collected by questionnaire. The result of this study has three major discoveries. First, perceived compatibility, perceived usefulness, perceived ease of use, perceived credibility and subjective norms do affect attitude toward using mobile payment. Second, attitude toward using mobile payment plays an important role in enhancing people intention to sue mobile payment. Third, digital identification has moderating effect and digital immigrants have stronger effect than the natives. Above all, this study provides the factors the consumers care and let the mobile payment firm to plan the specific strategy to satisfy people need so that can promote Taiwanese to sue mobile payment.
中文文獻
1. 金管會 (2017). "信用卡業務統計." from https://www.banking.gov.tw/ch/home.jsp?id=157&parentpath=0,4.
2. 蔡寧偉 (2010). "中國 ATM 設置選址現狀、問題和對策分析." 中國金融電腦(8): 46-49.
英文文獻
1. Analytics, S. (2017). from https://www.strategyanalytics.com/strategy-analytics/strategy-analytics-search?q=smartphone+users#.WtF7X4huZPY.
2. Bhattacherjee, A. (2001). "Understanding information systems continuance: an expectation-confirmation model." MIS quarterly: 351-370.
3. Chen, J. J. and C. Adams (2005). User acceptance of mobile payments: a theoretical model for mobile payments. Proceedings of the Fifth International Conference on Electronic Business (ICEB), Hong Kong.
4. Davis, F. D., et al. (1989). "User acceptance of computer technology: a comparison of two theoretical models." Management science 35(8): 982-1003.
5. Davis, F. D. (1989). "Perceived usefulness, perceived ease of use, and user acceptance of information technology." MIS quarterly: 319-340.
6. eMarketer (2016). from https://www.tenmax.io/archives/11406.
7. Fishbein, M. (1979). "A theory of reasoned action: some applications and implications."
8. Fornell, C. and D. F. Larcker (1981). "Evaluating structural equation models with unobservable variables and measurement error." Journal of marketing research: 39-50.
9. Gefen, D., et al. (2003). "Trust and TAM in online shopping: An integrated model." MIS quarterly 27(1): 51-90.
10. Giovanis, A. N., et al. (2012). "An extension of TAM model with IDT and security/privacy risk in the adoption of internet banking services in Greece." EuroMed Journal of Business 7(1): 24-53.
11. Hardgrave, B. C., et al. (2003). "Investigating determinants of software developers' intentions to follow methodologies." Journal of Management Information Systems 20(1): 123-151.
12. Jones, C., Ramanau, R., Cross, S., & Healing, G. (2010). Net generation or Digital Natives: Is there a distinct new generation entering university?. Computers & education, 54(3), 722-732.
13. Kaiser, H. F. (1974). "An index of factorial simplicity." psychometrika 39(1): 31-36.
14. Likert, R. (1932). "A technique for the measurement of attitudes." Archives of psychology.
15. Lim, N. (2003). "Consumers’ perceived risk: sources versus consequences." Electronic Commerce Research and Applications 2(3): 216-228.
16. Lin, Y.-C. J. (2011). Fake stuff: China and the rise of counterfeit goods, Routledge.
17. Liu, Y., et al. (2008). Recognition of QR code with mobile phones. Control and Decision Conference, 2008. CCDC 2008. Chinese, IEEE.
18. Lee, Y., et al. (2003). "The technology acceptance model: Past, present, and future." Communications of the Association for information systems 12(1): 50.
19. Lwin, M., et al. (2007). "Consumer online privacy concerns and responses: a power–responsibility equilibrium perspective." Journal of the academy of marketing science 35(4): 572-585.
20. Montano, D. E. and D. Kasprzyk (2015). "Theory of reasoned action, theory of planned behavior, and the integrated behavioral model." Health behavior: Theory, research and practice: 95-124.
21. Nysveen, H., et al. (2005). "Intentions to use mobile services: Antecedents and cross-service comparisons." Journal of the academy of marketing science 33(3): 330.
22. Oh, S., et al. (2003). "Adoption of broadband Internet in Korea: the role of experience in building attitudes." Journal of Information Technology 18(4): 267-280.
23. Prensky, M. (2001). "Digital natives, digital immigrants part 1." On the horizon 9(5): 1-6.
24. Rogers, E. M. (2010). Diffusion of innovations, Simon and Schuster.
25. Schierz, P. G., et al. (2010). "Understanding consumer acceptance of mobile payment services: An empirical analysis." Electronic Commerce Research and Applications 9(3): 209-216.
26. Statistic. "NFC mobile payment users worldwide from 2012 to 2018 (in millions)." 2018, from https://www.statista.com/statistics/461512/nfc-mobile-payment-users-worldwide/.
27. Taylor, S. and P. A. Todd (1995). "Understanding information technology usage: A test of competing models." Information systems research 6(2): 144-176.
28. Tornatzky, L. G. and K. J. Klein (1982). "Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings." IEEE Transactions on engineering management(1): 28-45.
29. Turban, E., et al. (2002). "Electronic commerce: A managerial perspective 2002." Prentice Hall: ISBN 0 13(975285): 4.
30. Van der Heijden, H. (2003). "Factors influencing the usage of websites: the case of a generic portal in The Netherlands." Information & management 40(6): 541-549.
31. Venkatesh, V. (2000). "Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model." Information systems research 11(4): 342-365.
32. Venkatesh, V. and F. D. Davis (1996). "A model of the antecedents of perceived ease of use: Development and test." Decision sciences 27(3): 451-481.
33. Venkatesh, V. and F. D. Davis (2000). "A theoretical extension of the technology acceptance model: Four longitudinal field studies." Management science 46(2): 186-204.
34. Venkatesh, V., et al. (2003). "User acceptance of information technology: Toward a unified view." MIS quarterly: 425-478.
35. Want, R. (2011). "Near field communication." IEEE Pervasive Computing 10(3): 4-7.
36. Wang, Y.-S., et al. (2003). "Determinants of user acceptance of Internet banking: an empirical study." International journal of service industry management 14(5): 501-519.
37. Webster, J. and L. K. Trevino (1995). "Rational and social theories as complementary explanations of communication media choices: Two policy-capturing studies." Academy of Management journal 38(6): 1544-1572.
38. Wu, J.-H., et al. (2008). "Testing the technology acceptance model for evaluating healthcare professionals' intention to use an adverse event reporting system." International Journal for Quality in Health Care 20(2): 123-129.
39. Y.A. Au, R. J. K. (2008). "The economics of mobile payments: Understanding stakeholder issues for an emerging financial technology application." Electronic Commerce Research and Applications 7: pp. 141-164.
40. Yang, H.-d. and Y. Yoo (2004). "It's all about attitude: revisiting the technology acceptance model." Decision Support Systems 38(1): 19-31
41. Zhang, N., et al. (2008). "IDT-TAM integrated model for IT adoption." Tsinghua Science & Technology 13(3): 306-311.
校內:2023-06-20公開