簡易檢索 / 詳目顯示

研究生: 蘇哲彬
Su, Je-Bin
論文名稱: 電動載具用非接觸式感應饋電軌道: 交錯繞製式編織型陣列區塊感應耦合系統之研製
Contactless Inductive Power Transmission Track for Electric Vehicles: Implementation of Interlaced-Winding Weaving-Type Array Block Inductive Coupling System
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 非接觸編織型交錯繞製式RS-485
外文關鍵詞: contactless, weaving-type, interlaced-winding, RS-485
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製應用於非接觸式感應饋電軌道之感應耦合系統,其特點係採交錯繞製式編織型陣列區塊耦合結構建置載具用饋電軌道。首先文中將針對不同耦合結構進行模擬分析,並探討交錯繞製式編織型耦合結構可行性,為提高電能傳輸效率,系統中採用雙繞組選擇激發機制。次級側單晶片將因感應結構拾取能量大小,做出適當的判斷,並利用RF收發模組送出訊息給予初級側作為開啟繞組模式依據,並藉由RS-485通訊架構,傳遞監控主機與初級側單晶片之間資料。最後實驗結果顯示,於6.5mm氣隙下最高電能傳輸效率達53.6%。

    This thesis investigates the inductive coupling system of contactless inductive power transmission track, and the main feature is utilizing interlaced-winding weaving-type coupling structure to build a power transmission track for vehicles. At first, this thesis will present different coupling structures and to explore feasibility of interlaced-winding weaving- type coupling structure. In order to improve the efficiency of power transmission, the system will use double-winding selective mechanism. The microcontroller sending message to primary side via RF module depends on energy of secondary side picked up. According to the message, the primary side will choose correct coil mode. At the same time, the host can communicate with microcontroller by RS-485 communications architecture. Finally, experimental results show that the highest power transmission efficiency of the power transmission track is 53.6% under 6.5mm air-gap.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 1 1-3 研究方法 4 1-4 論文大綱 7 第二章 感應耦合結構基本特性分析 8 2-1 前言 8 2-2 感應耦合結構分析與比較 8 2-2-1 磁性材料特性分析 8 2-2-2 典型感應耦合結構模擬與分析 10 第三章 雙繞組編織型感應結構分析 21 3-1 前言 21 3-2 初級側雙繞組設計與分析 21 3-3 次級側感應結構設計與分析 25 第四章 硬體電路設計 30 4-1 前言 30 4-2 硬體電路架構 30 4-3 通訊電路設計 31 4-3-1 串列通訊種類 31 4-3-2 RS-232介面電路 33 4-3-3 RS-485通訊架構 34 4-3-4 RS-485介面電路 35 4-3-5 RS-485線材 36 4-4 控制電路機制 37 4-4-1 單晶片控制電路簡介 37 4-4-2 系統控制機制 37 4-4-3 次級側脫軌機制 41 4-4-4 次級側整流濾波電路 41 4-4-5 初級側繞組開啟方式 42 4-4-6 RF收發電路 42 4-5 監控主機介面設計 44 4-6 非接觸式感應饋電軌道系統設計流程 46 第五章 系統實驗結果 48 5-1 前言 48 5-2 硬體電路製作 48 5-3 耦合結構量測與分析 50 5-4 整體架構結果量測 51 第六章 結論與未來研究方向 56 6-1 結論 56 6-2 未來研究方向 57 參考文獻 58

    [1] Y. Wu, L. Yan, and S. Xu, “Modeling and performance analysis of the new contactless power supply system,” in Proc. IEEE ICEMS’05, 2005, pp. 1983-1987.
    [2] Y. Wu, L. Yan, and S. Xu, “A new contactless power delivery system,” in Proc. IEEE ACEMS’03, 2003, pp. 253-256.
    [3] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON’97, 1997, pp. 792-797.
    [4] B. M. Song, R. Kratz, and S. Gurol, “Contactless inductive power pickup system for Maglev applications,” in Proc. IEEE IAS’02, 2002, pp. 1586-1591.
    [5] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” in Proc. IEEE APEC’00, 2000, pp. 769-773.
    [6] W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” in Proc. IEEE PESC’02, 2002, pp. 579-584.
    [7] I. G. Hwang, H. K. Lee, Y. S. Kong, and E. S. Kim, “High-efficiency series-parallel resonant converter for the non-contact power supply,” in Proc. IEEE APEC’05, 2005, pp. 1496-1501.
    [8] H. Sukamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, “Large air-gap coupler for inductive charger,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, 1999.
    [9] A. Kawamura, G. Kuroda, and Z. Chi, “Experimental results on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC’07, 2007, pp. 2779-2784.
    [10] X. Liu and S. Y. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [11] J. Li, Q. Yung, H. Chen, and J. Wang, “Study and application of contact-less electrical energy transmission system,” in Proc. IEEE VPPC’08, 2008, pp. 1-4.
    [12] W. J. Heetderks, “RF powering of millimeter- and submillimeter-sized neural prosthetic implants,” IEEE Trans. Biomed. Eng., vol. 35, no. 5, pp. 323-327, 1988.
    [13] F. Sato, J. Murakami, T. Suzuki, H. Matsuki, S. Kikuchi, K. Harakawa, H. Osada, and K. Seki, “Contactless energy transmission to mobile loads by CLPS- test driving of an EV with starter batteries,” in Proc. IEEE INTERMAG’97, 1997, pp. 4203-4205.
    [14] S. I. Adachi, F. Sato, and S. Kikuchi, “Consideration of contactless power station with selective excitation to moving robot,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3583-3585, 1999.
    [15] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5037, 1996.
    [16] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, 2001.
    [17] K. Hatanaka, F. Sato, H. Matsuki, S. Kikuchi, and J. Kawase, “Power transmission of a desk with a cord-free power supply,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3329-3331, 2002.
    [18] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, T. Watanabe, and T. Satoh, “Consideration on cordless power station- contactless power transmission system,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5037-5039, 1996.
    [19] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, T. Watanabe, and T. Satoh, “A new meander type contactless power transmission system-active excitation with a characteristics of coil shape,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2069-2071, 1998.
    [20] T. Kojiya, F. Sato, H. Matsuki, and T. Sato, “Automatic power supply system to underwater vehicles utilizing non-contacting technology,” in Proc. IEEE OCEANS’04, 2004, vol. 4, pp. 2341-2345.
    [21] D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IEEE IPEC’05, 2005, pp. 1133-1136.
    [22] C. S. Wang, O. H. Stielau, and A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
    [23] G. A. J. Elliott, J. T. Boys, and A. W. Green, “Magnetically coupled systems for power transfer to electric vehicles,” in Proc. IEEE PEDS’95, 1995, pp. 797-801.
    [24] S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC’08, 2008, pp. 4320-4325.
    [25] L. L. Hao, H. Aiguo, and G. A. Covic, “Development of a discrete energy injection inverter for contactless power transfer,” in Proc. IEEE ICIEA’08, 2008, pp. 1757-1761.
    [26] C. S. Wang, G. A. Covic, and O. H. Stielau, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE IECON’01, 2001, pp. 1049-1054.
    [27] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, 2006.
    [28] J. M. Barnard, J. D. V. Wyk, and J. A. Ferreira, “Linear contactless power transmission systems for harsh environments,” in Proc. IEEE AFRICON’96, 1996, pp. 711-714.
    [29] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless energy transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83-85, 2007.
    [30] Marin Soljacic, Power transfer through strongly coupled resonances, Massachusetts Institute of Technology, 2007.
    [31] A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys., vol. 323, no. 1, pp. 34-48, 2008.
    [32] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, 2009.
    [33] A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient weakly- radiative wireless energy transfer: an EIT-like approach,” Ann. Phys., vol. 324, no. 8, pp. 1783-1795, 2009.
    [34] A. Kurs, R. Moffatt, and M. Soljacic, “Simultaneous mid-range power transfer to multiple devices,” Appl. Phys. Lett., vol. 96, no. 4, pp. 1-3, 2010.
    [35] T. Sekitani, M. Takamiya, Y. Noguchi, S. Nakano, Y. Kato, K. Hizu, H. Kawaguchi, T. Sakurai, and T. Someya, “A large-area flexible wireless power transmission sheet using printed plastic MEMS switches and organic field-effect transistors,” in Proc. IEEE IEDM’06, 2006, pp. 1-4.
    [36] M. Soma, D. C. Galbraith, and R. L. White, “Radio-frequency coils in implantable devices: misalignment analysis and design procedure,” IEEE Trans. Biomed. Eng., vol. 34, no. 4, pp. 276-282, 1987.
    [37] K. W. Klontz, “Skin and proximity effect in multi-layer transformer windings of finite thickness,” in Proc. IEEE IAS’95, 1995, vol. 1, pp. 851-858.
    [38] K. Finkenzeller, RFID HANDBOOK. 2nd ed., England: Wiley, 2003.
    [39] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
    [40] 童子原,電動載具用非接觸式感應饋電軌道:高功率交流正弦激勵電源系統之研製,國立成功大學電機工程學系碩士論文,2010年。
    [41] 張孟詔,電動載具用非接觸式感應饋電軌道:載具側三埠式充電/供電系統,國立成功大學電機工程學系碩士論文,2010年。
    [42] 范逸之、陳立元,Visual Basic與RS-232串列通訊控制最新版,文魁資訊股份有限公司,2001年。
    [43] 范逸之,Visual Basic與分散式監控系統:使用RS-232/485串列通訊,文魁資訊股份有限公司,2001年。
    [44] 許永和,介面設計與實習使用Visual Basic,全華科技圖書股份有限公司,2005年。
    [45] 顧高至,智慧型多功能自走車之研發,國立成功大學工程科學系碩士論文,2003年。
    [46] 黃建榮,網路電力監控系統之設計與製作,逢甲大學資訊電機工程學系碩士在職專班碩士論文,2006年。
    [47] 趙春棠,PIC單晶片學習密笈:以PIC16F877為例,全威圖書有限公司,2007年。

    下載圖示 校內:2012-08-20公開
    校外:2012-08-20公開
    QR CODE