| 研究生: |
王顗泰 Wang, Yi-Tai |
|---|---|
| 論文名稱: |
應用季長期天氣展望預報台灣中部地區缺水機率 Probability Forecasting of Water Shortage Based on Seasonal Weather Outlook in Central Taiwan |
| 指導教授: |
游保杉
Yu, Pao-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 缺水機率預報 、連續型降雨-逕流模式 、季長期天氣展望 、入流量預報 |
| 外文關鍵詞: | probability forecasting, system dynaimic model, rainfall-runoff model, seasonal weather outlook, inflow forecasting |
| 相關次數: | 點閱:112 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在建立「季長期缺水機率預報」模式並嘗試整合季長期天氣展望資料、降雨-逕流模式與水源供需系統動力模式,進行中部地區各縣市未來三個月之缺水機率預報。
本研究所提出之「季長期缺水機率預報」其主要架構包括三部分:(1)季長期天氣展望、(2)連續型降雨-逕流模式與(3)水源供需系統動力模式。首先,利用中央氣象局所提供之季長期天氣展望資料配合歷史水文資料進行轉換為月雨量及月溫度,再透過分解模式將月雨量及月溫度降為日時間尺度資料,並經由蒙地卡羅法配合降雨-逕流模式,進行台灣中部地區11個集水區未來三個月1000組之入流量預報。接著進一步結合水源供需系統動力模式,以推估未來可能之供需情形,進而評估未來三個月台灣中部地區各縣市可能之缺水情形,提供區域性乾旱預警資訊與防救決策之參考。模式率定與驗證分析結果發現:降雨-逕流模式能合理模擬研究區域內集水區之日流量序列,並配合天氣展望資料與水源供需系統動力模式能適當反映未來可能發生之缺水情況。最後利用民國100年上半年枯水期之缺水案例分析,結果顯示:本模式能適當反映未來可能會發生之缺水的情況,並於梅雨季來臨後能反映未來不缺水之情況。最後,本研究發展視窗化預報模式,使模式更具親和力。
This study proposed a stochastic approach to forecast water-shortage probabilities for three months ahead in central Taiwan. This approach integrates the seasonal weather outlook, rainfall-runoff model and system dynamic model of water resources system for providing early warning information on water shortage for the coming three months.
This approach comprises three components: (1) seasonal weather outlook, (2) continuous rainfall-runoff model, and (3) system dynamic model of water resources system. Central Weather Bureau of Taiwan issues the seasonal weather outlook every month which comprises the probabilities of being above normal, normal, and below normal for monthly rainfall and monthly mean temperature for 1 to 3 months ahead. The Monte Carlo method is used to repeat random sampling from the seasonal weather outlook. For each Monte Carlo trial, the monthly rainfalls and monthly mean temperatures for 1 to 3 months ahead in the eleven upstream catchments of central Taiwan can be obtained. Further, the disaggregation model is used to convert the monthly values into the daily rainfall and temperature series for the coming three months. The continuous rainfall-runoff model, i.e., HBV-based hydrological model, uses 1000 sets of daily rainfall and temperature series to simulate 1000 sets daily inflow series for each upstream catchment. With the simulated daily inflows, the system dynamic model is adopted to simulate the water budge of water resources system. After all the Monte Carlo trails, the water-shortage probabilities for one to three months ahead can be calculated for regional drought warning and disaster prevention. The results reveal that the HBV-based hydrological model has good performances for daily inflow simulation at the eleven inflow sites and the proposed approach can reasonably forecast the water-shortage conditions for one to three months ahead by using the water-shortage event in 2011 for validation. Moreover, the window-based model with user-friendly interfaces for the proposed approach has been developed.
參考文獻
1. 吳雷根,2004,「曾文水庫枯水期長期入流量預測之研究」,國立成功大學水利及海洋工程學系碩士論文。
2. 李晏全,2006,「石門水庫枯水期月與季入流量預報之研究」,國立成功大學水利及海洋工程學系碩士論文。
3. 周容辰,2012,「氣候變遷對大甲溪發電量之衝擊」,國立成功大學水利及海洋工程學系碩士論文。
4. 郭俊超,2009,「結合季節雨量與水文模式於枯水期旬流量預測」,國立成功大學水利及海洋工程學系博士論文。
5. 陳孟詩,2010,「中央氣象局月季長期天氣展望之預報校驗」,天氣分析與預報研討會,607-612。
6. 童新茹,2011,「結合季長期天氣預報與水文模式推估石門水庫入流量」,國立中央大學水文與海洋科學研究所碩士論文。
7. 楊道昌,1999,「區域連續型降雨-逕流模式之研究」,國立成功大學水利及海洋工程學系博士論文。
8. 經濟部水利署,2011,「氣候變遷對水旱災災害防救衝擊評估研究計畫(2/2)」。
9. 經濟部水利署,2011,「臺灣中部區域水資源經理基本計畫」。
10. 經濟部水利署,2012,「氣候變遷對中部地區水旱災災害防救衝擊評估及調適策略擬定(1/2)」。
11. 經濟部水利署水利規劃試驗所,2008,「濁水溪水系現有水庫水資源聯合運用可行性評估(1)」。
12. 經濟部水利署水利規劃試驗所,2012,「強化中部水資源分區因應氣候變遷水資源管理調適能力研究」。
13. 經濟部水利署水利緊急應變經驗學習中心網站,http://wra.caece.net/llc/source/100_dry.html
14. Cañón, J., González, J. and Valdés, J. (2009), “Reservoir operation and water allocation to mitigate drought effects in crops: A multilevel optimization using the drought frequency index”, Journal of Water Resources Planning and Management, 135(6), 458-465.
15. Druce, J. D. (2001), “Insights from a history of seasonal inflow forecasting with a conceptual hydrologic model”, Journal of Hydrology, 249, 102-112.
16. Duan, Q., Sorooshian, S. and Gupta V. K., (1992), “Effective and efficient global optimization for conceptual rainfall-runoff models”, Water Resources Research, 28(4), 1015-1031.
17. Forrester, J. W. (1961), Industrial Dynamics. MA: Pegasus Communications
18. Ghile, Y. B. and Schulze, R. E. (2009), “Use of an ensemble re-ordering method for disaggregation of seasonal categorical rainfall forecasts into conditioned ensembles of daily rainfall for hydrological forecasting”, Journal of Hydrology, 371, 85-97.
19. Hamon, W. R. (1961), “Estimating potential evapotranspiration”, Journal of Hydraulics Division, Proceeding of the American Society of Civil Engineers, 87, 107-120.
20. Huang, W. C. and Yuan, L. C. (2004), “A drought early warning system on real-time multireservoir operations”, Water Resources Research, 40, W06401.
21. Koutsoyiannis, D. and Onof, C. (2001), “Rainfall disaggregation using adjusting procedures on a Poisson cluster model”, Journal of Hydrology, 246(1-4), 109-122.
22. Lall, U. and Sharma, A. (1996), “A nearest neighbor bootstrap for resampling hydrologic time series”, Water Resources Research, 32(3), 679-693.
23. Maheepala, S. and Perera, B. (1996), “Monthly hydrologic data generation by disaggregation”, Journal of Hydrology, 178(1-4), 277-291.
24. Mejia, J. M. and Rousselle, J. (1976), “Disaggregation Models in Hydrology Revisited”, Water Resources Research, 12(3), 185-186.
25. Nowak, K., Prairie, J., Rajagopalan, B. and Lall, U. (2010), “A nonparametric stochastic approach for multisite disaggregation of annual to daily streamflow”, Water Resources Research, 46(8), W08529.
26. Sharma, A., Singh, R. V., Narulkar, S. M. and Dashora, P. K. (2003), “Identification of appropriate stochastic model for forecasting monsoonal river inflows”. International Agricultural Engineering Journal, 12(3-4), 191-208.
27. Stedinger, J. R. and Vogel, R. M. (1984), “Disaggregation procedures for generating serially correlated flow vectors”, Water Resources Research, 20(1), 47-56.
28. Tarboton, D. G., Sharma, A. and Lall, U. (1998), “Disaggregation procedures for stochastic hydrology based on nonparametric density estmation”, Water Resources Research, 34(1), 107-119.
29. Tucci, C. E. M., Clarke, R. T., Collischonn, W., Dias, P. L. S. and Sampaio, G. (2003), “Long-term flow forecasts based on climate and Hydrologic modeling: Uruguay River basin”, Water Resources Research, 39(7), SWC3-1~3-11.
30. Valencia, D. and Schaake, J. C. (1973), “Disaggregation Processes in Stochastic Hydrology”, Water Resources Research, 9, 580-585.
31. Wang, E. L., Zhang, Y. Q., Luo, J. M., Chiew, F. H. S. and Wang, Q. J. (2011), “Monthly and seasonal streamflow forecasts using rainfall‐runoff modeling and historical weather data”, Water Resources Research, 47(5), W05516.
32. Yapo, P. O., Gupta, H. V. and Sorooshian, S. (1996), “Automatic calibration of concept-tual rainfall-runoff models : sensitivity to calibration data”, Journal of Hydrology, 181(1), 23-48.
33. Yu, P. S., Yang, T. C. and Wu, C. K. (2002), “Impact of climate change on water resources in southern Taiwan”, Journal of Hydrology, 260(1-4), 161-175.