簡易檢索 / 詳目顯示

研究生: 張峻旗
Chang, Chun-Chi
論文名稱: 具有低成本自我校正架構之十四位元每秒一億次取樣數位類比轉換器
A 14bit 100MS/s Current-Steering DAC with a Low Cost Self-Calibration Structure
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 82
中文關鍵詞: 數位類比轉換器校正
外文關鍵詞: DAC, calibration
相關次數: 點閱:61下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多訊號處理和通訊應用上,資料轉換器是個重要的輸出入介面。資料轉換器包括類比數位轉換器和數位類比轉換器。在本篇論文中,我們主要專注於數位類比轉換器的設計。對於高速應用,電流驅動式數位類比轉換器是最適合的架構之一。然而電流源的不匹配限制了數位類比轉換器的性能。大面積的電流源陣列可以維持電流源所需的精準度要求;但對於高頻信號,較大元件所附帶的寄生效應導致動態範圍的衰減。所以我們提出ㄧ個新的前景自我校正架構去克服此問題。這個校正技術不需要額外的高解析度類比數位轉換器,這將降低電路設計的複雜度。此外我們使用一個消除突波的技巧去降低在切換狀態時的突波效應。
    在本篇論文中,一個具有低成本自我校正架構之十四位元每秒一億次取樣的電流驅動式數位類比轉換器已經被實現。他使用上述的前景自我校正技術去改善電流源的不匹配,並且縮小元件尺寸去降低對於高頻訊號之動態範圍的衰減。這樣做不但降低成本(晶片面積較小)也改善了電路的性能。這個數位類比轉換器採用台積電0.18微米、1P6M 混合訊號互補式金氧半導體製程,核心電路面積是0.99mm2。工作電壓是1.8伏,功率消耗是32毫瓦。

    In many signal processing and telecommunication applications, Data converter is an important I/O interface. Data converter includes analog-to-digital converter (ADC) and digital-to-analog converter (DAC). In this thesis, we mainly focus in DAC design. For high speed application, the current-steering DAC is one of most suitable architecture. However, mismatch between current sources limits the performance of DAC. Large-area current source arrays can maintain a required level of matching accuracy between current sources, but the parasitic effect of large device results in degradation of dynamic range for high-frequency signal. So we present a new foreground self-calibration structure to overcome the problem. The calibration technique doesn't need addition high resolution analog-to-digital converter (ADC), it would reduce the complexity for circuit design. Beside, we use a deglitch technique to reduce glitch effect at switching time.
    In this thesis, a 14-bit 100MS/s current-steering DAC with a low cost self-calibration structure has been implemented. It uses the above foreground self-calibration technique to overcome the mismatch between current sources, and reduce device size to decrease in degradation of dynamic range for high-frequency signal. This not only makes cost down (smaller die area) but also improves the performance of the circuit. The DAC occupies 0.99 mm2 0f active area in TSMC 0.18-um 1P6M mixed signal CMOS process. It operates in 1.8 V power supply, and the power consumption is 32mW.

    Abstract (Chinese) ......I Abstract (English) ......II Acknowledgment ......III Table of Contents ......IV List of Figures ......VI List of Tables ......IX 1. Introduction ......1 1.1 Motivation ......1 1.2 Organization ......2 2. Fundamental of Digital-to-Analog Converter ......4 2.1 Introduction ......4 2.2 Static Performance ......5 2.3 Dynamic Performance ......8 2.4 Nyquist-rate Digital-to-Analog Converter Architecture ......14 2.4.1 Resistor-String DAC ......14 2.4.2 Resistor-Approach DAC ......15 2.4.3 Charge-Redistribution DAC ......19 2.4.4 Current-Steering DAC ......20 2.5 Classification for Current-Steering DAC ......22 2.5.1 Intrinsic DAC ......22 2.5.2 Dynamic Element Matching DAC ......22 2.5.3 Self-Calibration DAC ......23 3. System Analysis and Design of DAC ......25 3.1 Design Consideration for Current-Steering DAC ......25 3.1.1 Transistor Mismatch ......25 3.1.2 Noise Analysis ......28 3.1.3 Consideration for DAC Speed ......29 3.1.4 Output Voltage Fluctuation Effect ......30 3.2 Segmentation of DAC ......32 3.3 Classification for Calibration ......36 3.4 Proposed Calibration Structure ......38 3.5 The Decision for Calibration Bits ......41 3.6 Calibration Process ......43 4. Circuit design of DAC ......45 4.1 DAC Architecture ......45 4.2 Digital Circuits ......46 4.2.1 Finite State Machine ......46 4.2.2 Frequency Divider ......48 4.2.3 Decoders ......49 4.3 High-Seed Latch ......51 4.4 Current Cell ......54 4.4.1 Main Current Cell ......54 4.4.2 Calibration Current Cell ......58 4.4.3 Reference Current Cell ......59 4.5 The Bias of Current Cells ......60 4.6 Current Comparator ......62 4.7 Layout and Floor Plan ......63 5. Simulation and Measurement ......66 5.1 Simulation Results ......66 5.2 Test Setup ......70 5.2.1 Digital Input and Clock Termination ......70 5.2.2 Output Signal ......71 5.2.3 Power Supply and Ground ......73 5.3 Experimental Results ......73 6. Conclusions ......79 Bibliography ......80

    [1] B. Razavi, “Principles of Data Conversion system Design,” Piscataway, NJ: IEEE Press, 1995.

    [2] J. Wikner and N. Tan, “Modeling of CMOS digital-to-analog converters for telecommunication,” IEEE Trans. Circuits and System II, vol. 46, pp.489-499, May 1999.

    [3] J. Bastos, A. Marques, M. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, pp. 1959-1969, Dec. 1998.

    [4] G. Van der Plas, J. Vandenbussche, W. Sansen, M. Steyaert, and G. Gielen, “A 14-bit intrinsic accuracy Q2 random work CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, pp. 1708-11718, Dec 1999.

    [5] A. Rugeja and B. Song, “A 14-bit 100-MS/s CMOS DAC designed for spectral performance,” IEEE J. Solid-State Circuits, vol. 34, pp. 1719-1731, Dec. 1999.

    [6] Alex R. Bugeja, and Bang-Sup Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, pp. 1841-1852, Dec 2000.

    [7] David A. Johns and Ken Martin, “Analog Integrated Circuit Design,” John Wiley & Sons Inc, 1997.

    [8] Phillip E. Allen and Douglas R. Holberg, “CMOS Analog Circuit Design,” Oxford University Press, 2002.

    [9] R. Jacob Baker, Harry W. Li, David E. Boyce, “CMOS Circuit Design, Layout, and Simulation,” IEEE press, 1998.

    [10] Peter Stubberud and J. W. Bruce, “An Analysis of Dynamic Element Matching Flash Digital-to-Analog Converters,” IEEE Trans. Circuits and System II, vol. 48, NO. 2, Feb. 2001.

    [11] L. R. Carley, “A noise shaping coder topology for 15+ bits converters,” IEEE J. Solid-State Circuits, vol. 24, pp. 267-273, 1989.

    [12] J. Bastos, “Characterization of MOS transistor mismatch for analog design,” Ph.D. dissertation, ESAT-MICAS, Katholieke Univ. Leuven, Leuven, Belgium, 1998.

    [13] M. J. M. Pelgrom et. al. “Matching properties of MOS transistors,” IEEE, J. Solid-State Circuits, vol. 24, No. 5, pp. 1433-1439, Oct. 1989.

    [14] J. Bastos, A. Marques, M. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959–1969, 1998.

    [15] Chi-Hung Lin and Klaas Bult, “A 10b, 500-MSample/s CMOS DAC in 0.6 mm2,” IEEE J. Solid-State Circuits, vol. 33, NO. 12 , Dec 1998.

    [16] M. Tiilikainen, “A novel high precision adjustment method for the transconductance of a MOSFET,” in Proc. CICC, pp. 525-528, May 1999.

    [17] Mika P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,” IEEE J. Solid-State Circuits, vol. 36, NO. 7, July 2001

    [18] Georgi I. Radulov, Patrick J. Quinn, Hans Hegt, and Arthur van Roermund, “An on-chip self-calibration method for current mismatch in D/A Converters,” Proc. ESSCIRC, pp. 169-172, 2005

    [19] T. B. Williams, “The Calibration of a DAC Using Differential Linearity Measurements,” IEEE Trans. Instrumentation and Measurement, vol. 31, No. 4, pp. 261-265, Dec. 1982.

    [20] Jussi Pirkkalaniemi, Marko Kusunen, Mikko Waltari, Kari Halonen, “A Digital Calibration for A 16-Bit, 400-MHz Current-Steering DAC,” IEEE ISCAS, 2004.

    [21] M. Pastre, M. Kayal, “High-Precision DAC Based on A Self-Calibration Sub-Binary Radix Converter,” IEEE ISCAS, 2004

    [22] S. Luschas, H.-S. Lee, “Output Impedance Requirements for DACs,” IEEE ISCAS, 2003.

    [23] A. Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-Bandwidth Limitations for High-Speed High-Resolution Current-Steering CMOS D/A Converters,” in Proc. IEEE Int. Conf. Electronics, Circuits and Systems (ICECS), pp. 1193-1196, Sept. 1999

    [24] H. Traff, “Novel Approach to High-Speed CMOS Current Comparators,” Electron. Lett., vol. 28, no. 3, pp. 310-312, Jan. 1992.

    [25] Montrose, Mark I., “Printed Circuit Board Design Techniques for EMC Compliance :a handbook for designers,” New York: IEEE Press, 2000, Wiley.

    [26] Brooks, Douglas, “Signal Integrity Issues and Printed Circuit Board Design,” Upper Saddle River, NJ: Prentice Hall, 2003.

    [27] Thierauf, Stephen C., “High-Speed Circuit Board Signal Integrity,” Boston, MA: Artech House, 2004.

    [28] Ken Gentile, “Driving a Center-Tapped Transformer with a Balanced Current-Output DAC,” Application Note AN-912, Analog Devices.

    下載圖示 校內:2010-08-30公開
    校外:2010-08-30公開
    QR CODE