| 研究生: |
黃仕斌 Huang, Shih-Bin |
|---|---|
| 論文名稱: |
原油來源對瀝青特性之影響 Effect of Crude Oil Sources on Characteristics of Bitumen |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 減壓渣油 、重減壓油 、廣分布指數 、瀝青精指數 、膠體不穩定指數 、老化指數 |
| 外文關鍵詞: | Vacuum residue, Heavy vacuum gas oil, Polydispersity Index, Asphaltene index, Colloidal instability Index, Aging Index |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同原油提煉之瀝青於鋪面績效之影響扮演著重要的角色,黏結料則須加以分析,使瀝青應具有合適的功能性,提供道路耐久性以及行車舒適度。本研究主要是針對不同原油來源煉製而成之減壓油渣(VR)進行取樣試驗,並添加重減壓油(HVGO)、吹製瀝青之樣本,分別進行物性與化性試驗。物性方面透過瀝青膠泥基本物性試驗以及動態剪切流變儀(DSR)取得各項質流參數;化性方面則利用傅立葉轉換紅外線光譜儀(FT-IR)、薄層液相層析法之火焰離子檢視器(TLC-FID)以及高效能凝膠滲透層析儀(HP-GPC)分別探討瀝青材料官能基、化學成分以及分子大小分佈,接續進行實驗室模擬短期老化試驗,再將老化瀝青膠黏結劑依照新鮮瀝青黏結劑物性與化性試驗作業。最後,綜合上述試驗結果,分析物理性質與化學特性之間的相關性。
瀝青黏結劑主要以飽和族(saturate)、芳香族(aromatic)、膠質(resin)以及瀝青精(asphaltene)所組成,組分組成比例影響VR物理特性,於初期老化時輕質組分中芳香族產生化學變化轉變成膠質,再由膠質轉變為瀝青精,且於老化過程中主要增加的官能基為酮(ketones)與亞碸(sulfoxide),這些官能基係因化學成分的降解以及氧化作用而生成,酮與亞碸的增加意味著膠體結構中極性分子(瀝青精、膠質)增多,使分子間凝聚力增加而影響瀝青黏結料的質流性質,以致材料趨向脆性行為。最後本研究以物理特性為依據進行摻配,當摻配成品擁有相同的黏滯度或針入度時,軟瀝青摻配吹製瀝青者於瀝青精指數指數(IA)以及廣分布指數(PDI)值皆高於硬瀝青摻配重減壓油者,則膠體不穩定指數(IC)大致相同,但經短期老化之老化指數為硬瀝青摻配重減壓油者較高,是因為膠體之化學轉變較顯著,導致物理特性變異較大。
Asphalt from different crude oil plays an important role on pavement performance, in order to make asphalt have suitable functionality, provide road durability and driving comfort by analyzing asphalt.
In this study, sampling different crude oil refining vacuum residues (VR) for test, and adding heavy vacuum gas oil (HVGO), blown asphalt, were subjected to physically and chemically characteristic test respectively. Physical part of asphalt by basic physical test, and dynamic shear rheometer (DSR) to obtain the mass flow parameters; Chemical properties by Fourier transform infrared spectroscopy (FT-IR), Thin-layer Chromatography Flame lionization Detector (TLC-FID) and High performance gel permeation chromatography (HP-GPC), discussed asphalt functional groups, chemical composition and molecular size distribution respectively. Succeeding term aging tests in laboratory simulations, then follow fresh asphalt physical properties and chemical testing operations. Finally, combining the above test results, analysis the correlation between physical and chemical properties
Asphalt is mainly composed of saturate, aromatic, resin and asphaltene. the composition ratio of VR affected physical properties. In the early aging of aromatic transferred to resin by chemical change, and then resin changes into the asphaltene, and the functional group of ketones and sulfoxide have major increase in the aging process , ketone and sulfoxide increase means that the colloidal structure of polar molecules (asphaltene, resin) increased.
Finally, the study base on physical characteristics for mixing, when mixing sample with the same viscosity or penetration, the Asphaltene Index (IA), and Polydispersity Index (PDI) values of Soft asphalt blending air blown asphalt were higher than the hard asphalt blending heavy vacuum gas oil. In the other hand, Colloidal instability Index (IC) are almost the same. However, the Aging Index (AI) of short-term aging is higher than the hard asphalt blending heavy vacuum gas oil. Because the chemical characteristic of colloid changes significantly, physical properties varied greatly.
中華鋪面工程學會 (2004),英漢鋪面名詞彙編(第一版),台南。
王澄霞 (1973) 「有機化學(上冊) 」,三民書局,台北。
王啟川、李佳芬、姜仁章、徐文平、黃明星、鄭淑華 (2005) 「化學」,高立國書有限公司,台北。
王睿懋 (2001),不同高分子改質瀝青(PMB)之物理及化學性質初步探討,國立中央大學土木工程研究所碩士論文,桃園。
方嘉德、李德响 (1997),「基礎化學分析(第七版下册) 」,美亞書版股份有限公司,台北。
杜逸虹 (1983),「聚合體學(高分子化學) 」 ,三民書局
張德勤 (2001),「石油瀝青的生產與應用」,中國石油出版社,北京。
黃碩偉 (2012),還原劑添加於回收瀝青混凝土之黏結料性質,國立成功大學土木工程研究所碩士論文,台南。
蔡信行、劉榮宗、康文成 (1999),「石油與石油工業概論」,中國石油公司訓練所,嘉義。
蔡攀鰲 (1990) 「瀝青混凝土」,三民書局,台北。
Brule, B., Ramond, G. and Such, C. (1986).“Relationships Between Composition, Structure, and Properties of Road Asphalts: State of Research at the French Public Works Central Laboratory,” Transportation Research Record: Journal of the Transportation Research Board, 1096, pp.22-33.
Chiu, C.T., Tia, M., Ruth, B.E. and Page, G.C. (1994). “Investigation of Laboratory Aging Processes of Asphalt Binders Used in Florida,” Transportation Research Record : Journal of the Transportation Research Board, 1436, pp. 60-70.
Corbett, L.W. (1984). “Refinery Processing of Asphalt Cement,” Transportation Research Record: Journal of the Transportation Research Board, 999, pp.1-5.
Corbett, L.W. and Schweyer, H.E. (1981). “Composition and Rheology Considerations in Age Hardening of Bitumen,” Journal of the Association of Asphalt Paving Technologists, Vol. 50, pp. 571-582.
Curtis, C.W., Terrel, R.L., Perry, L.M., Swailm, S.A. and Braanan, C.J. (1991). “Importance of Asphalt-Aggregate Interaction in Adhesion,” Journal of the Association of Asphalt Paving Technologists, Vol. 60, pp. 477~531.
Goodrich, J.L., and Kari, W.J (1986) “Asphalt Composition Tests: Their Application and Relation to Field Performance,” Transportation Research Record: Journal of the Transportation Research Board, 1096, pp.146-164.
Hunter, R.N. (2000). Asphalt in Road Construction, Thomas Telford, London.
Khoo, K.Y., Austroads (2012).” National Survey of Bitumens: 2006 to 2012,” Austroads, Sydney
Lin, C.Y. and Tjeerdema, R.S. (2008).“Crude Oil, Oil, Gasoline and Petrol,” Encyclopedia of Ecology, pp.797-805.
Lu, X. and Isacsson, U. (2002). “Effect of Ageing on Bitumen Chemistry and Rheology,” Construction and Building Materials, Vol. 16, pp. 15-22.
Lu, X. (2005) “Wax Morphology in Bitumen,” Journal of Materials Science, Vol.40, pp.1893-1900.
Lesueur, D. (2009). “The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen,” Advances in Colloid and Interface Science, Vol.145, pp.42-82.
Mirza, M.W. and Witczak, M.W. (1995). “Development of a Global Aging System for Short and Long Term Aging of Asphalt Cements,” Journal of the Association of Asphalt Paving Technologists, Vol. 64, pp. 393-430.
Mercado, E.A., Martin, A.E., Park, E.S., Spiegelman, C., and Glover, C.J. (2005). “Factors Affecting Binder Properties between Production and Construction,” Journal of Materials in Civil Engineering, Vol. 17, pp. 89-98.
Melendez, L.V., Lache, A., Orrego-Ruiz, J.A., Pachon, Z. and Mejia-Ospino, E. (2012). “Prediction of the SARA analysis of Colombian crude oils using ATR–FTIR spectroscopy and chemometric methods,” Journal of Petroleum Science and Engineering, Vol. 90-91, pp. 56-60.
Oyekunle, L.O. (2006). “Certain Relationships between Chemical Composition and Properties of Petroleum Asphalts from Different Origin,” Oil and Gas Science and Technology – Rev. IFP, Vol.61, pp.433-441.
Peterson, J.C. (1984). “Chemical Composition of Asphalt as Related to Asphalt Durability : State of the Art,” Transportation Research Record : Journal of the Transportation Research Board, 999, pp.13-30.
Roberts, F.L., Kandhal, P.S., Brown, E.R., Lee Dah-Yinn and Kennedy, T.W., (2009). Hot Mix Asphalt Materials, Mixture Design, and Construction, National Center for Asphalt Technology, NAPA Education Foundation, Maryland.
Read, J. and Whiteoak, D. (2003). The Shell Bitumen Handbook, Shell Bitumen, UK.
Stastna, J., Zanzotto, L., and Vacin, O.J. (2003). “Viscosity Function in Polymer-Modified Asphalts,” Journal of Colloid and Interface Science, Vol. 259, pp. 200-207.
Seifollah, N., David, M., Tyler, S., and Naresh, R. (2010). Practical Applications of FTIR to Characterize Paving Materials, Texas Department of Transportation Research and Technology Implementation Office, Texas.
Skoog, D.A., Holler, F.J., and Crouch, S.R. (2007) Principle of Instrumental Analysis, Thomson Brooks/Cole, 6th edition, CA, Ch.16A
Siddiqui, M.N. and Ali, M.F., (1999). “Studies on the aging behavior of the Arabian asphalts,” Department of Chemistry, King Fahd University of Petroleum and Minerals,31261, pp.1-11.
Valcke, E., Rorif, F., and Smets, S. (2009). “Ageing of EUROBITUM Bituminised Radioactive Waste: An ATR-FTIR Spectroscopy Study, ” Journal of Nuclear Materials, Vol.393, pp.175-185
校內:2023-12-31公開