| 研究生: |
黃培祥 Huang, Pei-Hsiang |
|---|---|
| 論文名稱: |
適用於線性分散式系統之數位再設計自適應控制器: 允許初始狀態不一致的重複學習演算法則 Digital Redesign of the Decentralized Adaptive Tracker for Linear Large-Scale Systems: An EP-Based Iterative Learning Control with Variations of Initial State Errors |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hunag |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 自適應控制 、重複學習演算 、進化演算法 、數位再設計 |
| 外文關鍵詞: | adaptive control, digital redesign, evolutionary programming, iterative learning control |
| 相關次數: | 點閱:184 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個適用線性分散式系統之數位再設計自適應控制器且允許出使狀態不一致的重複學習演算法則在本論文中被提出,以用來改善系統暫態響應。給定包含了數個多輸入多輸出子系統的大型系統,以進化演算法來設計重複學習控制器以建構一個解耦參考模型,而此經過設計的參考系統可以去追蹤任何無法用數學形式來表示的軌跡,且無論在暫態或穩態都有良好的效果。接著,分散式自適應控制之數位在設計在本論文中被提出,因此大尺度取樣系統其狀態和軌跡可以和參考模型的狀態和軌跡軌跡儘可能的相近,且具備閉迴路解耦的特性。在設計的過程中,我們將數位再設計所得到的輸入當作重複學習演算控制的第一代輸入,以加速學習演算的速度並提昇整體的追蹤效果;除此之外,進化演算法用來搜尋重複學習演算的最佳增益,使的整個過程能夠有更佳的收斂效果。
In this thesis, a novel algorithm for digital redesign of the decentralized adaptive tracker for sampled-data linear large-scale system using evolutionary programming based iterative learning control with variation of initial state errors is proposed to improve the dynamic performance of transient responses. Based on the given sampled-data large scale linear system consisting of interconnected multi-input multi-output subsystems, the evolutionary-programming (EP) based iterative learning tracker is proposed to construct a decoupled well-designed reference model, so that the output response of the well-designed reference model will well track any trajectory (at both transient and steady state) specified at sampling instants, which may not be presented by the analytic reference model initially. Then, the digital-redesign decentralized adaptive tracker is proposed, so that states of the digitally controlled sampled-data large-scale system closely match the ones of the well-designed reference model with the closed-loop decoupling property. As a result, it yields the output of the digitally controlled sampled-data large scale system tracks well any trajectory (both at transient and steady state), which may not be presented by the analytic reference model. During the process, a well-designed control input for the first generation of the iterative learning control (ILC) is constructed by applying the digital-redesign linear quadratic tracker to speed up the performance of the learning process. Besides, the EP is applied to tune the learning gain to further improve the ILC strategy.
Reference
[1] H. S. Wu, “Decentralized robust control for a class of large-scale interconnected systems with uncertainties,” International Journal of System Science, vol. 20, no. 12, pp. 2597–2608, 1989.
[2] M. Jamshidi, Largescale System: Modeling and Control, New York, Elserier Science Publishing, 1983.
[3] E. J. Davison, “The robust decentralized control of servomechanism problem for composite system with input-output interconnection,” IEEE Transactions on Automatic Control, AC-24, no. 2, pp. 325-327, 1979.
[4] P. A. Ioannou and J. Sun, Robust Adaptive Control, Englewood, Prentice-Hall, 1996.
[5] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control, Englewood, Prentice Hall, 1996.
[6] B. M. Mirkin, “Decentralized adaptive controller with zero residual tracking errors,” Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel, pp. 28-30, Jun. 28-30, 1999.
[7] B. M. Birkin, “Proportional-integral-delayed algorithm of adaptation,” Automatica, no. 5, pp. 13-20, 1991.
[8] S. Arimoto, “Learning control theory for robotic motion,” International Journal of Adaptive Control and Signal Processing, vol. 4, pp. 54-564, 1990.
[9] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,” J. Robotic., vol. 1, pp. 123-140, 1984.
[10] C. Mi, H. Lin, and Y. Zhang, “Iterative learning control of antilock braking of electric and hybrid vehicles,” IEEE Transactions Vehicular Technology, vol. 54, no. 2, pp. 486-494, 2005.
[11] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96-114, 2006.
[12] J. X. Xu and R. Yan, “On initial conditions in iterative learning control,” IEEE Transactions Automatica Control, vol. 50, no. 9, pp. 1349-1354, 2005.
[13] D. Yi, J. Wu and P. Jiang, “Iterative learning control for visual servoing with unknown homography matrix,” IEEE International Conference on Control and Automation, Guangzhou, China, pp. 2791-2796, May 30-June 1, 2007.
[14] X. Hao, D. Owens and S. Daley, “Proportional difference type iterative learning control algorithm based on parameter optimization,” IEEE Transactions Automatica Control, vol. 33, pp. 3136-3141,2008.
[15] S. Hillenbrand and M. Pandit, “An iterative controller with reduced sampling rate for plants with variations of initial states,” International Journal of Control, vol. 73, no. 10, pp. 882-889, 2000.
[16] C. Wen and Y. C. Soh, “Decntalized adaptive control using integrator backstepping,” Automatica, vol. 33, pp. 1719-1724, 1997.
[17] Y. Zhang, C. Wen and Y. C. Soh, “Robust decentralized adaptive stabilization of interconnected systems with guaranteed transient performance,” Automatica, vol. 36, pp. 907-915, 2000.
[18] X. Ruan, Z. Zenn and K. H. Park, “Decentralized iterative learning control to large-scale industial processes for nonrepetitive trajectory tracking,” IEEE Transactions on systems, vol. 38, no. 1, pp. 238-252, 2008.
[19] J. X. Xu and Z. Qu, “Robust iterative learning control for a class of nonlinear systems,” Automatica, vol. 34, pp. 983-988, 1998.
[20] M. H. Lin, J. S. H. Tsai, C.W. Chen, S. M. Guo and C. A. Chu, “Digital redesign of the decentralized adaptive tracker for linear large-scale systems,” International Journal of Systems Science (accepted in April 2009).
[21] H. Wu, H. Kawabata and K. Kawabata, “Decentralized iterative learning control schemes for large scale systems with unknown interconnections,” IEEE Conference Proceedings Control Application, vol. 2, pp. 1290-1295, June 23-25, 2003.
[22] S. M. Guo, L. S. Shieh, G. Chen and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems – I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557–1570, 2000.
[23] K. S. Narendra and N. O. Oleng, “Exact output tracking in decentralized adaptive control systems,” IEEE Transactions on Automatic Control, AC 47, no. 2, pp. 390–394, 2002.