簡易檢索 / 詳目顯示

研究生: 黃獻霆
Huang, Hsien-Ting
論文名稱: 具有新型校正架構及歸零機制之十四位元數位類比轉換器
A 14-bit 200-MHz DAC with New Calibration Structure and Return-to-Zero Scheme
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 81
中文關鍵詞: 歸零機制數位類比轉換器校正架構
外文關鍵詞: DAC, Calibration, RZ
相關次數: 點閱:89下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電流驅動式數位類比轉換器具有能直接驅動外面負載的特性,故被廣泛使用於高速的應用上,但此種電流驅動式數位類比會遭受到製程上元件不匹配效應,此種效應會同時限制轉換器的靜態與動態線性度,在本篇論文中提出一個新型校正架構來改善其元件不匹配效應所造成的影響,另外,非線性的輸出轉換也會同樣降低其動態效能,最近幾年當中,在非線性的輸出時間中常會利用輸出歸零技巧將輸出歸零來改善其效能,但這同樣損失了一半輸出能量在歸零上,在此也提出一種固定時間歸零技巧來使改善其動態效能之餘,也不致於會浪費過多的能量在歸零時間上。
      我們將在這次論文中實現一個十四位元電流驅動式數位類比轉換器,它使用上述的自我校正架構與固定時間歸零機制來改善其靜態及動態上的效能,它採用1P6M CMOS製程,其整體面積是1.07mm x 1.07mm,在模擬中INL與DNL期望小於0.5 LSB,在200-MHz的操作頻率下,低輸出頻率下,其SFDR可達到77dB,高輸出頻率下,其SFDR可達到68dB,在1.8V的電源供應下,其功率損耗是43mW,在量測上其INL是3.66LSB,其SFDR在20-MHz操作頻率下,在信號頻率超過3-MHz之前都能保持大於60 dB。

     Current-Steering Digital-to-Analog Converters (DACs) can directly drive external loads and are commonly used for high-speed application. However, these current-steering DACs suffer from the element mismatch of technologies and this limit both the static and dynamic linearity. In this thesis, a new calibration structure to improve the element mismatch is presented. Besides, the nonlinear transient output also degrades the dynamic performance. Recently, the return-to-zero method is used to attenuate the output when this nonlinear transient occurs, but loses half of output power, too. Here, we also propose a fixed-time return-to-zero scheme to improve the dynamic performance without losing much output power.
     A 14-bit 200-MHz current-steering DAC is implemented in this thesis. It uses the above self-calibration circuit to obtain the static linearity and fixed-time return-to-zero output to obtain the dynamic linearity. The DAC occupies 1.07mm X 1.07 mm in a 0.18-um 1P6M CMOS process. In the simulation, the INL and DNL is expected to be less than 0.5 LSB and the SFDR is 77dB at the lower output frequency and 68dB at the high output frequency when this DAC operates at the design clock of 200MS/s. It consumes 43mW from a 1.8V supply. In the measurement, the INL is 3.66LSB and the SFDR remains above 60 dB up to a signal frequency of 3-MHz at the update rate of 20 MS/s.

    1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 2 Nyquist-Rate Digital-to-Analog Converter 4 2.1 Nyquist-Rate Digital-to-Analog Converter Fundamentals 5 2.1.1 Ideal DAC 5 2.1.2 Static Performance 6 2.1.3 Sample-and-Hold Effect 8 2.1.4 Dynamic Performance 11 2.2 Nyquist-Rate Digital-to-Analog Converter Architecture 13 2.2.1 Resistor-String DAC 13 2.2.2 R-2R Ladder DAC 14 2.2.3 Multiple R-String DAC 15 2.2.4 Charge Redistribution DAC 16 2.2.5 Current-Steering DAC 17 2.3 Segmented DAC Architecture 18 2.4 Summary 21 3 Architecture and System Designs of DAC 22 3.1 Introduction 22 3.1.1 Shortcomings of Current-Steering DAC 22 3.1.2 Nonlinear Transient Error 24 3.2 Design of Current Sources 26 3.2.1 Output-Resistance Limit of Current Sources 26 3.2.2 Minimum Required Matching of Current Sources 30 3.2.3 Suitable Size of Current Sources 33 3.3 Proper Number of Thermometer-Coded ULSB 35 3.4 Calibration Structure 36 3.4.1 Proposed Calibration Method 36 3.4.2 Choice of Calibration Bits 38 3.4.3 Calibration Process 39 3.5 Return-to-Zero Scheme 41 3.5.1 Proposed Return-to-Zero Method 42 3.6 Summary 47 4 Circuit Design of DAC 48 4.1 The System Structure of DAC 48 4.2 Digital Circuits 49 4.2.1 Digital Circuits of Calibration Structure 49 4.2.2 Digital Circuits of Decoder 53 4.3 Current Cell 54 4.3.1 Current Source Cell 54 4.3.2 Reference Current Cell 57 4.3.3 Calibration Current Cell 58 4.3.4 Bias of Current Cell 60 4.4 Current Comparator 62 4.5 High-Speed Latch 63 4.6 Layout 65 4.7 Summary 68 5 Simulation Results and Measurement 69 5.1 Simulation Results 69 5.2 Measurement Results 74 6 Conclusions 78 References

    [1] B.Razavi, “Principles of Data Conversion System Design,” NJ: IEEE Press, 1995.
    [2] J. Bastos, Augusto M. Marques, M. Steyaert, and W. Sansen, “A 12-bit Intrinsic Accuracy High-Speed CMOS DAC”, IEEE J. Solid State Circuits, vol. 33, No. 12, pp. 1959-1969, Dec. 1998.
    [3] Yasuyuki Nakamura, Takahiro Miki, Atsushi Maeda, Harufusa Kondoh, and Nobuharu Yazawa, “A 10-b 70-MS/s CMOS D/A Converter”, IEEE J. Solid State Circuits, vol. 26, No. 4, pp. 637-642, April 1991.
    [4] Geert A. M. Van der Plas, Jan Vandenbussche, Willy Sansen, Michel S. J. Steyaert, and Georges G. E. Gielen, “A 14-bit Intrinsit Accuracy Q2 Random Walk CMOS DAC”, IEEE, J. Solid State Circuits, vol. 34, No. 12, pp. 1708-1718, Dec. 1999.
    [5] Yiannos manoli, “A Self-Calibration Method for Fast High-Resolution A/D and D/A Converters,” IEEE, J. Solid-State Circuit, vol. 24, No. 3, pp. 603-608, June 1989.
    [6] D. Wouter J. Groeneveld, Hans J. Schouwenaars, Henk A.H. Termeer, and Cornelis A. A. Bastiaansen, “A Self-Calibration Technique for Monolithic High-Resolution D/A Converters”, IEEE J. Solid State Circuits, vol. 24, No. 6, pp.1517-1522, Dec. 1989.
    [7] Mika P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,” IEEE, J. Solid-State Circuits, vol. 36, No. 7, pp. 1144-1147, July 2001.
    [8] Yonghua Cong and Randall L. Geiger, “A 1.5-V 14-Bit 100-MS/s Self-Calibrated DAC,” IEEE, J. Solid-State Circuit, vol. 38, No. 12, Dec. 2003.
    [9] Shu-Yuan Chin and Chung-Yu Wu, “A 10-b 125-MHz CMOS Digital-to-Analog Converter (DAC) with Threshold-Voltage Compensated Current Sources”, IEEE J. Solid State Circuits, vol. 29, No. 11, pp. 1374-1380, Nov. 1994.
    [10] Alex R. Bugeja, “High-speed, high-precision digital-analog converters designed for spectral performance,” PhD dissertation, University of Illinois at Urbana-Champaign, 2000.
    [11] Alex R. Bugeja, and Bang-Sup Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC”, IEEE J. Solid-State circuits, vol. 35, No. 12, pp. 1841-1852, Dec. 2000.
    [12] Qiuting Huang, Pier Andrea Francese, Chiara Martelli, and Jannik Nielsen, “A 200MS/s 14b 97mW DAC in 0.18um CMOS,” ISSCC Dig. Tech. Papers, pp. 364-365, 2004.
    [13] David A. Johns and Ken Martin, “Analog Integrated Circuit Design,” John Wiley & Sons Inc, 1997.
    [14] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001.
    [15] A. Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations for high-speed high-resolution current-steering CMOS D/A converters,” in Proc. IEEE Int. Conf. Electronics, Circuits and Systems (ICECS), Sept. 1999, pp. 1193–1196.
    [16] Mikael Gustavsson, J.Jacob Wikner, and Nianxiong Nick Tan, “CMOS data converters for communications,” Boston, 2000.
    [17] Y. Cong and R. Geiger, “Formulation of INL and DNL yield estimation in current-steering D/A converters,” in Proc. IEEE, Int. Symp. Circuits and Systems, 2002, pp. 149-152.
    [18] ”Design Documents for TSMC 0.25um 1P5M Mixed Signal Process.”
    [19] M. J. M. Pelgrom et. al. “Matching properties of MOS transistors”, IEEE, J. Solid State Circuits, vol. 24, No. 5, pp. 1433-1439, Oct.1989.
    [20] Chi-Hung Lin and Klaas Bult, “A 10-b, 500-Msample/s CMOS DAC in 0.6 mm2”, IEEE J. Solid-State Circuits, vol. 33, No. 12, pp. 1948-1958, Dec. 1999.
    [21] Anne Van den Bosch, Marc A. F.Borremans, Michel S. J. Steyaert and Willy Sansen, “A 10-bit 1-Gsample/s Nyquist Current-Steering CMOS D/A Converter”, IEEE J. Solid-State Circuits, vol. 36, No. 3, pp. 315-324, Mar. 2001.
    [22] T. B. Williams, “The calibration of a DAC using differential linearity measurements,” IEEE, Trans. Instrumentation and Measurement, vol. 31. No. 4, pp. 261-265. Dec. 1982.
    [23] Alex R. Bugeja, Bang-Sup Song, Partrick L. Rakers, and Steven F. Gillig, “A 14-b, 100-MS/s CMOS DAC Designed for Spectral Performance” IEEE, J. Solid State Circuits, vol. 34, No. 12, pp 1719-1732, Dec. 1999.
    [24] Byung-moo Min and Soo-won Kim, “High performance CMOS current comparator using resistive feedback network,” Electron. Lett., vol. 34, No. 22, pp. 2074-2076, Oct. 1998.
    [25] “AD9764, 14-bit, 100MSPS+ TxDAC D/A Converter,” Analog Devices, Data Sheet.

    下載圖示 校內:2008-08-23公開
    校外:2008-08-23公開
    QR CODE