| 研究生: |
張薰文 Chang, Hsun-Wen |
|---|---|
| 論文名稱: |
使用三維測量評估學齡前幼兒足部內側縱弓對步態之影響 The investigation of effects of medial longitudinal arch on biomechanics of gait with three-dimensional measurement in preschool aged children |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 足 、足弓 、扁平足 、三維雷射掃描 、足底壓力 、步態 、動作分析 、學齡前幼兒 |
| 外文關鍵詞: | podiatry, medial longitudinal arch, flatfoot, three-dimensional laser scanner, foot pressure, gait, motion analysis, preschool children |
| 相關次數: | 點閱:195 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
足部是身體進行行走、跑步等下肢承重活動時唯一與地面接觸及直接受力之部位,足部包含三個足弓,而內側縱向足弓又是足部最重要之足弓。低於七歲之幼兒產生扁平足之機率高達50%以上,且是臨床上父母親最為關心之骨科問題之一,足弓過高或過低都會造成下肢骨骼肌肉之傷害,且被認為會影響粗動作發展。目前被認為最準確評估足弓之方法為放射線照相術,但因為輻射、機器昂貴等問題,並不適合廣泛使用於正在成長中之幼兒,臨床人員多使用足印法或直接足弓高度量測法來評估內側縱向足弓,但是這些方法都僅呈現足弓單一面向之特性,而非評估其完整之結構,提供足弓三維之訊息將能提供更為準確的評估結果,此外對於足弓在步態中不同的時期所扮演之角色仍不清,對於下肢各關節生物力學之影響也仍未釐清,因此本篇研究的目的是:1)利用三維掃描器建構足部模型,並建立足下體積以評估足弓;2)驗證靜態所測得之足下體積預測行走足底壓力改變之有效性;3)評估足下體積與兒童行走不同時期時足底壓力分布情況之相關性; 4)探討足下體積與行走壓力中心特性之相關性。
本論文實驗設計上共分成兩個部分,收取2-6歲兒童參與本研究,並接受以下測試:a)受試者分別在單腳站姿及坐姿之下進行單腳足部掃描;b)進行行走測試,並利用壓力板收集足底壓力,進而計算出行走時足部各區力量、壓力、步態週期、壓力中心位置等訊息。
第一部分是建構2-6歲學齡前幼兒之足弓下體積之相關資料,結果顯示,3D掃描器具有良好的信效度( r = 0.935~0.988; 0.859~0.962),且足下體積參數與傳統量測足弓高度方法(舟狀骨高)有高度相關性( r = 0.642; 0.712),且具有年齡之鑑別性,可以分辨出2-6歲兒童足弓之不同,在站立及坐姿下之足下體積會隨著年齡的增加而增加,而足弓之柔軟度則隨著年齡的增加而減少。
第二部分主要驗證足下體積參數與動態行走之足底壓力之相關性,結果顯示AVI與單腳站立期間中足之壓力改變有相關,同時舟狀骨高度、站姿足弓下體積與坐姿足弓下體積皆與行走站立期時,第一、第二蹠骨和中足區所承受之平均力量、平均壓力呈負相關(r = -0.280~-0.643),和外側足跟呈正相關(r = 0.300~0.369),表示足弓越低者,在前足內側及中足部分會承受較高的力量與壓力,而在外側足跟會承受較低的力量與壓力,這可能造成足部內側軟組織之受傷。此外兒童行走時壓力中心移動軌跡之特性及與足弓之關係也被證實,結果發現兒童行走時,個期所佔的比例與成年人不同,二至六歲兒童明顯在全足接觸期(FFP)所佔之比例較少(19.68%),而最後推進期(FFPOP)所佔之比例較多(52.52%),同時發現足弓高低與初期足跟接觸時壓力重心位置、壓力重心前後移動軌跡、壓力重心軌跡與足部長軸所形成之面積有關。
本論文建立一個具有信、效度的三維評估足弓之方法,並建立2-6歲幼兒足弓發展之參考資料,同時幫助我們了解足弓高低對於行走時足底壓力分佈、壓力中心移動軌跡,及對行走不同時期之影響。
The foot is the only part of our body in contact with the surface when we walk or run. There are three arches under the foot of which the medial longitudinal arch is the most important. The prevalence of flatfoot is above 50% among children younger than 7 years old, and parents are concerned about it because it may cause poor functional performance and cause skeletomuscular injury on the lower extremity. Radiography is the gold standard method for evaluating the medial longitudinal arch, but the hazard of exposure under irradiation is of especial concern for growing children. Most clinicians use footprint or anthropometric measurements to evaluate the medial longitudinal arch for easy application; however these measurements only acquire two dimensional information of the foot which might not be able to supply the complete information of the whole aspect of the medial longitudinal arch. It is believed that three dimensional information of the arch would provide the most accurate evaluation of the foot arch. Moreover, the effect of the foot arch on foot pressure distribution and biomechanics of the lower extremity during different periods of gait is unclear, and the effect may influence the development of the growing bones or cause different types of injury. The purposes of this proposed project are therefore to: 1) evaluate the foot arch using a three dimensional laser scanner; 2) validate the foot arch volume measured from a static position as a functional dynamic parameter; 3) determine the relationship between plantar pressure measurements at different areas of the foot during different stance phases of the gait cycle and the static foot arch parameter; and 4) describe the center of pressure progression characteristics under the plantar region while walking for preschool-aged children
There are two parts in this dissertation. Preschool children aged from two to six were recruited in this study and underwent the following procedures. They were asked to sit and stand on the 3D laser foot scanner and undergo foot scanning for each foot. Then the children walked at their selected speed along a walkway with a pressure plate mounted in the center. Pressure and force under different regions of the foot, center of pressure (COP) trajectories and timing of the phases were calculated.
The first part is to establish a reference of foot arch volume when children are aged from two to six. The results show that the three-dimensional scanner has good reliability (r = 0.935~0.988) and validity (r = 0.859~0.962) and the foot arch volume parameters have high correlation with navicular height (r = 0.642; 0.712). The foot arch volumes in sitting and standing positions increase with age, and the foot arch becomes more stable with age. The foot arch volume parameters are able to distinguish the differences between different ages.
The second part is to investigate the association between the foot arch volume parameters and the pressures under the foot. The results show that the arch volume index (AVI) is correlated with the pressure difference under the midfoot during the foot flat phase. Meanwhile, the navicular height and foot arch volumes in sitting and standing positions are negatively correlated (r = -0.280~-0.643) with the mean forces and pressures under the first and second metatarsals, and the midfoot, and are positively correlated (r = 0.300~0.369) with those under the lateral heel during the different subphases of walking. This may prompt to cause soft tissue injury on the medial side of the foot. The third part is to investigate the characteristics of the center of pressure trajectories while walking and their correlation with the medial longitudinal arch. The percentages of the four subphases while walking for children are different from those of adults. The forefoot flat phase (FFP) in children (19.68%) is shorter than in adult and the forefoot push off phase (FFPOP) in children (52.52%) is much longer than in adult during walking. In addition, the center of pressure at the initial heel contact, the medial-lateral displacement of the COP during FFPOP and the COP integrals are correlated with the foot arch parameters.
A new method of evaluating the foot arch from three dimensional aspects is proposed in this study. A normal range of foot arch volume for preschool aged children is also established. This study will advance our understanding of the effect of the medial longitudinal arch on the foot while walking.
Atamturk, D. (2009). "[Relationship of flatfoot and high arch with main anthropometric variables]." Acta Orthop Traumatol Turc 43(3): 254-259.
Basmajian, J. V. and G. Stecko (1963). "The Role of Muscles in Arch Support of the Foot." J Bone Joint Surg Am 45: 1184-1190.
Blanc, Y., C. Balmer, T. Landis and F. Vingerhoets (1999). "Temporal parameters and patterns of the foot roll over during walking: normative data for healthy adults." Gait Posture 10(2): 97-108.
Bosch, K., J. Gerss and D. Rosenbaum (2010). "Development of healthy children's feet--nine-year results of a longitudinal investigation of plantar loading patterns." Gait Posture 32(4): 564-571.
Brody, D. M. (1982). "Techniques in the evaluation and treatment of the injuried runner." Orthop Clin North Am 13(3): 18.
Butler, R. J., H. Hillstrom, J. Song, C. J. Richards and I. S. Davis (2008). "Arch height index measurement system: establishment of reliability and normative values." J Am Podiatr Med Assoc 98(2): 102-106.
Cappello T, S. K. (1998). "Determining treatment of flatfeet in children." Curr Opin Pediatr 10(1): 77-81.
Cashmere, T., R. Smith and A. Hunt (1999). "Medial longitudinal arch of the foot: stationary versus walking measures." Foot Ankle Int 20(2): 112-118.
Cavanagh, P. R., E. Morag, A. J. M. Boulton, M. J. Young, K. T. Deffner and S. E. Pammer (1997). "The relationship of static foot structure to dynamic foot function." J Biomech 30(3): 243-250.
Cavanagh, P. R. and M. M. Rodgers (1987). "The arch index: a useful measure from footprints." J Biomech 20(5): 547-551.
Chang, J. H., S. H. Wang, C. L. Kuo, H. C. Shen, Y. W. Hong and L. C. Lin (2010). "Prevalence of flexible flatfoot in Taiwanese school-aged children in relation to obesity, gender, and age." Eur J Pediatr 169(4): 447-452.
Chen, C. H., M. H. Huang, T. W. Chen, M. C. Weng, C. L. Lee and G. J. Wang (2006). "The correlation between selected measurements from footprint and radiograph of flatfoot." Arch Phys Med Rehabil 87(2): 235-240.
Chen, J. P., M. J. Chung and M. J. Wang (2009). "Flatfoot prevalence and foot dimensions of 5- to 13-year-old children in Taiwan." Foot Ankle Int 30(4): 326-332.
Chen, M. J., C. P. Chen, H. L. Lew, W. C. Hsieh, W. P. Yang and S. F. Tang (2003). "Measurement of forefoot varus angle by laser technology in people with flexible flatfoot." Am J Phys Med Rehabil 82(11): 842-846.
Chiu, M. C., H. C. Wu, L. Y. Chang and M. H. Wu (2013). "Center of pressure progression characteristics under the plantar region for elderly adults." Gait Posture 37(3): 408-412.
Chuckpaiwong, B., J. A. Nunley, N. A. Mall and R. M. Queen (2008). "The effect of foot type on in-shoe plantar pressure during walking and running." Gait Posture 28(3): 405-411.
Cousins, S. D., S. C. Morrison and W. I. Drechsler (2012). "The reliability of plantar pressure assessment during barefoot level walking in children aged 7-11 years." J Foot Ankle Res 5(1): 8.
Forriol, F. and J. Pascual (1990). "Footprint analysis between three and seventeen years of age." Foot Ankle 11(2): 101-104.
Franettovich, M. M., T. G. McPoil, T. Russell, G. Skardoon and B. Vicenzino (2007). "The ability to predict dynamic foot posture from static measurements." J Am Podiatr Med Assoc 97(2): 115-120.
Gilmour, J. C. and Y. Burns (2001). "The measurement of the medial longitudinal arch in children." Foot Ankle Int 22(6): 493-498.
Gould, N., M. Moreland, R. Alvarez, S. Trevino and J. Fenwick (1989). "Development of the child's arch." Foot Ankle 9(5): 241-245.
Han, T. R., N. J. Paik and M. S. Im (1999). "Quantification of the path of center of pressure (COP) using an F-scan in-shoe transducer." Gait Posture 10(3): 248-254.
Hawes, M., W. Nachbauer and D. Sovak (1992). "Footprints as measure of arch height." Foot Ankle Clin 13: 22-26.
Hennig, E. M. and D. Rosenbaum (1991). "Pressure distribution patterns under the feet of children in comparison with adults." Foot Ankle 11(5): 306-311.
Hennig, E. M., A. Staats and D. Rosenbaum (1994). "Plantar Pressure Distribution Patterns of Young School Children in Comparison to Adults." Foot & Ankle International 15(1): 35-40.
Hennig, E. M., A. Staats and D. Rosenbaum (1994). "Plantar pressure distribution patterns of young school children in comparison to adults." Foot Ankle Int 15(1): 35-40.
Huang, C. K., H. B. Kitaoka, K. N. An and E. Y. Chao (1993). "Biomechanical evaluation of longitudinal arch stability." Foot Ankle 14(6): 353-357.
J. Hamill, B. T. B., K.M. Knutzen, G.M. Kirkpatrick, (1989). "Relationship between selected static an dynamic lower extremity measures." Clinical Biomechanics 4(4): 9.
Jack, E. A. (1953). "Navicular-cuneiform fusion in the treatment of the flatfoot." J Bone Joint Surg Am 35: 75-82.
Jameson, E. G., J. R. Davids, J. P. Anderson, R. B. Davis, 3rd, D. W. Blackhurst and L. M. Christopher (2008). "Dynamic pedobarography for children: use of the center of pressure progression." J Pediatr Orthop 28(2): 254-258.
Jelen, K., Z. Tetkova, L. Halounova, K. Pavelka, T. Koudelka and P. Ruzicka (2005). "Shape characteristics of the foot arch: dynamics in the pregnancy period." Neuro Endocrinol Lett 26(6): 752-756.
Jonely, H., J. M. Brismee, P. S. Sizer, Jr. and C. R. James (2011). "Relationships between clinical measures of static foot posture and plantar pressure during static standing and walking." Clin Biomech (Bristol, Avon) 26(8): 873-879.
Kanatli, U., H. Yetkin and E. Cila (2001). "Footprint and radiographic analysis of the feet." J Pediatr Orthop 21(2): 225-228.
Kusnoto, B. and C. A. Evans (2002). "Reliability of a 3D surface laser scanner for
orthodontic applications." American Journal of Orthodontics and Dentofacial Orthopedics 122(4): 7.
Ledoux, W. R. and H. J. Hillstrom (2002). "The distributed plantar vertical force of neutrally aligned and pes planus feet." Gait Posture 15(1): 1-9.
Leung, A. K., J. C. Cheng and A. F. Mak (2005). "A cross-sectional study on the development of foot arch function of 2715 Chinese children." Prosthet Orthot Int 29(3): 241-253.
Leung, A. K., J. C. Cheng, M. Zhang, Y. Fan and X. Dong (2004). "Contact force ratio: a new parameter to assess foot arch function." Prosthet Orthot Int 28(2): 167-174.
Lin, C. J., K. A. Lai, T. S. Kuan and Y. L. Chou (2001). "Correlating factors and clinical significance of flexible flatfoot in preschool children." J Pediatr Orthop 21(3): 378-382.
McPoil, T. G. and M. W. Cornwall (2007). "Prediction of dynamic foot posture during running using the longitudinal arch angle." J Am Podiatr Med Assoc 97(2): 102-107.
Meneses, J., T. Gharbi and J. Y. Cornu (2002). "Three-dimensional optical high-resolution profiler with a large observation field: foot arch behavior under low static charge studies." Appl Opt 41(25): 5267-5274.
Menz, H. B. and M. E. Morris (2006). "Clinical determinants of plantar forces and pressures during walking in older people." Gait Posture 24(2): 229-236.
Menz, H. B. and S. E. Munteanu (2005). "Validity of 3 clinical techniques for the measurement of static foot posture in older people." J Orthop Sports Phys Ther 35(8): 479-486.
Mootanah, R., J. Song, M. W. Lenhoff, J. F. Hafer, S. I. Backus, D. Gagnon, J. T. Deland, 3rd and H. J. Hillstrom (2013). "Foot Type Biomechanics Part 2: are structure and anthropometrics related to function?" Gait Posture 37(3): 452-456.
Morag, E. and P. R. Cavanagh (1999). "Structural and functional predictors of regional peak pressures under the foot during walking." J Biomech 32(4): 359-370.
Onodera, A. N., I. C. Sacco, E. H. Morioka, P. S. Souza, M. R. de Sa and A. C. Amadio (2008). "What is the best method for child longitudinal plantar arch assessment and when does arch maturation occur?" Foot (Edinb) 18(3): 142-149.
Pfeiffer, M., R. Kotz, T. Ledl, G. Hauser and M. Sluga (2006). "Prevalence of flat foot in preschool-aged children." Pediatrics 118(2): 634-639.
Picciano, A. M., M. S. Rowlands and T. Worrell (1993). "Reliability of open and closed kinetic chain subtalar joint neutral positions and navicular drop test." J Orthop Sports Phys Ther 18(4): 553-558.
Queen, R. M., N. A. Mall, W. M. Hardaker and J. A. Nunley, 2nd (2007). "Describing the medial longitudinal arch using footprint indices and a clinical grading system." Foot Ankle Int 28(4): 456-462.
Queen, R. M., N. A. Mall, J. A. Nunley and B. Chuckpaiwong (2009). "Differences in plantar loading between flat and normal feet during different athletic tasks." Gait Posture 29(4): 582-586.
Saltzman, C. L., D. A. Nawoczenski and K. D. Talbot (1995). "Measurement of the medial longitudinal arch." Arch Phys Med Rehabil 76(1): 45-49.
Shiang, T. Y., S. H. Lee, S. J. Lee and W. C. Chu (1998). "Evaluating different footprint parameters as a predictor of arch height." IEEE Eng Med Biol Mag 17(6): 62-66.
Sneyers, C. J., R. Lysens, H. Feys and R. Andries (1995). "Influence of malalignment of feet on the plantar pressure pattern in running." Foot Ankle Int 16(10): 624-632.
Staheli, L. T. (2008). Fundamentals of pediatric orthopedics. Philadelphia, Lippincott Williams & Wilkins.
Staheli, L. T., D. E. Chew and M. Corbett (1987). "The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults." J Bone Joint Surg Am 69(3): 426-428.
Stolwijk, N. M., J. Duysens, J. W. Louwerens, Y. H. van de Ven and N. L. Keijsers (2013). "Flat feet, happy feet? Comparison of the dynamic plantar pressure distribution and static medial foot geometry between Malawian and Dutch adults." PLoS One 8(2): e57209.
Teyhen, D. S., B. E. Stoltenberg, K. M. Collinsworth, C. L. Giesel, D. G. Williams, C. H. Kardouni, J. M. Molloy, S. L. Goffar, D. S. Christie and T. McPoil (2009). "Dynamic plantar pressure parameters associated with static arch height index during gait." Clin Biomech (Bristol, Avon) 24(4): 391-396.
Vanderwilde, R., L. T. Staheli, D. E. Chew and V. Malagon (1988). "Measurements on radiographs of the foot in normal infants and children." J Bone Joint Surg Am 70(3): 407-415.
Volpon, J. B. (1994). "Footprint analysis during the growth period." J Pediatr Orthop 14(1): 83-85.
Welton, E. A. (1992). "The Harris and Beath footprint: interpretation and clinical value." Foot Ankle 13(8): 462-468.
Wilken, J., S. Rao, C. Saltzman and H. J. Yack (2011). "The effect of arch height on kinematic coupling during walking." Clin Biomech (Bristol, Avon) 26(3): 318-323.
Williams, D. S., 3rd, I. S. McClay and J. Hamill (2001). "Arch structure and injury patterns in runners." Clin Biomech (Bristol, Avon) 16(4): 341-347.
Williams, D. S. and I. S. McClay (2000). "Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity." Phys Ther 80(9): 864-871.
Witana, C. P., S. Xiong, J. Zhao and R. S. Goonetilleke (2006). "Foot measurements from three-dimensional scans: A comparison and evaluation of different methods." International Journal of Industrial Ergonomics 36(9): 789-807.
Yalcin, N., E. Esen, U. Kanatli and H. Yetkin (2010). "Evaluation of the medial longitudinal arch: a comparison between the dynamic plantar pressure measurement system and radiographic analysis." Acta Orthop Traumatol Turc 44(3): 241-245.
Younger, A. S., B. Sawatzky and P. Dryden (2005). "Radiographic assessment of adult flatfoot." Foot Ankle Int 26(10): 820-825.