| 研究生: |
周孟圻 Chou, Meng-Chi |
|---|---|
| 論文名稱: |
利用拓樸約制條件協助LOD-2屋頂模型重建 LOD-2 Roof Models Reconstruction Assisted by Topological Constraints |
| 指導教授: |
饒見有
Rau, Jiann-Yeou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | LOD-2屋頂模型 、最小二乘平差 、拓樸約制條件 |
| 外文關鍵詞: | LOD-2 3D Roof Model, Least-squares adjustment, Topological constraints |
| 相關次數: | 點閱:134 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球智慧城市(Smart City)的蓬勃發展,各國對於三維地理資訊系統(Three-dimensional Geographic Information System, 3D GIS)的需求與日俱增,其中三維城市模型更是近年來日趨重要的研究議題之一,可以廣泛應用於土地規劃、工程建設、都市計畫、災害管理等。而三維建物模型在三維城市模型中扮演著重要的角色,我國內政部國土測繪中心遵循開放地理空間協會(Open Geospatial Consortium, OGC)所定義之CityGML規範標準,三維建物模型須符合建物細緻度等級(Level of Detail, LOD),由最簡略至最詳細分別為LOD-0至LOD-4共5個等級。本研究著重於探討LOD-2三維建物模型重建之可行性,其模型構造是由垂直牆面與屋頂之三維結構所組成,其中又以屋頂之三維結構最為重要,因此如何建置出完整、高精度、符合幾何條件之三維屋頂模型,即為本研究之主要目標。
本研究使用無人飛行載具(Unmanned Aerial Vehicle, UAV)與空載雷射掃描 (Airborne Laser Scanning, ALS)兩種資料來源產製點雲(Point Clouds)與物高模型(Object Height Model, OHM),以提供三維坐標之觀測量資訊,並藉由真實正射影像以人工數化屋頂結構之二維多邊形,以獲取屋頂結構之平面邊界與範圍,再利用最小二乘平差(Least-Squares Adjustment)進行平面擬合(Plane Fitting),進而取得各屋面在三維空間中的位置與分布狀態。此外,本研究透過建立拓樸約制條件(Topological Constraints)的方式進行附加約制條件之最小二乘平差,並設定各項幾何條件(Geometric Conditions)之改正,進一步調整各屋面多邊形之間的幾何關係,同時避免位相關係錯誤(Topological Errors)之情形,最終取得最佳化三維屋頂模型之成果。最後,本研究取樣台灣與印尼一些具有代表性之建築物進行測試,並使用人工量測之屋角三維坐標進行精確度分析,驗證出本研究所建置之屋頂模型成果,其平面誤差約為20公分,高程誤差約為15公分,符合CityGML LOD-2所規範之2公尺精度,證實了本研究所提出之屋頂模型重建方法的適用性。
Three-dimensional (3D) building model, a product of 3D city models, is one of the important elements in digital city analysis. It can be widely used in many different geographic activities, such as smart city, urban planning, disaster management, building insurance. The quality of 3D building models is related to their construction and geometric information. CityGML, an international 3D city modeling standard, formulated the scale to express the detail of 3D building models in different Level-of-Details (LODs). From the roughest to the most detailed one is named LOD-0 to LOD-4. The main goal of our study is to reconstruct the LOD-2 3D building models which are configured by detailed roof structure with vertical facades. Since the 3D roof structure is the most important part of the LOD-2 model, we will focus on how to reconstruct the complete, high-accuracy and topological error-free 3D roof models.
We create point clouds and Object Height Model (OHM) from Unmanned Aerial Vehicle (UAV) images and Airborne Laser Scanning (ALS), extract 2D polygons of the roof structure by manual digitization, then perform least-squares adjustment to fit the 3D roof planes. Considering the topology between adjacent polygons, we set some geometric conditions to constrain their relationship and conduct roof plane correction to avoid topological errors. Eventually, we use some typical buildings in Taiwan and Indonesia for testing, and conduct accuracy analysis by manually measuring the 3D coordinates of roof corners. It has proved that the results of reconstructed roof models can conform to the LOD-2 standard of CityGML, confirming that the proposed method of 3D roof models reconstruction is feasible to varied types of roofs with high accuracy.
Amat, N., Setan, H., Majid, Z., 2010. Integration of aerial and close-range photogrammetric methods for 3d city modeling generation. Geoinformation Science Journal 10, 49-60.
Baarda, W., 1968. A testing procedure for use in geodetic networks. Publication on Geodesy, New Series 2.
Bay, H., Tuytelaars, T., Van Gool, L., 2006. Surf: Speeded up robust features, European conference on computer vision. Springer, pp. 404-417.
Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., Çöltekin, A., 2015. Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information 4, 2842-2889.
Breiman, L., 2001. Random forests. Machine learning 45, 5-32.
Brenner, C., Haala, N., Fritsch, D., 2001. Towards fully automated 3D city model generation. Automatic Extraction of Man-Made Objects from Aerial and Space Images III 9.
Cheng, L., Gong, J., Li, M., Liu, Y., 2011. 3D building model reconstruction from multi-view aerial imagery and lidar data. Photogrammetric Engineering & Remote Sensing 77, 125-139.
Cheng, L., Tong, L., Chen, Y., Zhang, W., Shan, J., Liu, Y., Li, M., 2013. Integration of LiDAR data and optical multi-view images for 3D reconstruction of building roofs. Optics and Lasers in Engineering 51, 493-502.
DeMers, M.N., 2008. Fundamentals of geographic information systems. John Wiley & Sons.
Dorninger, P., Pfeifer, N., 2008. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 8, 7323-7343.
Feifei, X., Zongjian, L., Dezhu, G., Hua, L., 2012. Study on construction of 3D building based on UAV images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 39, B1.
Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381-395.
Flamanc, D., Maillet, G., Jibrini, H., 2003. 3d city models: an operational approach using aerial images and cadastral maps. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences 34, 53-58.
Fraser, C.S., Baltsavias, E.P., Grün, A., 2001. 3D building reconstruction from high-resolution Ikonos stereo-imagery. Balkema.
Gröger, G., Kolbe, T.H., Nagel, C., Häfele, K.-H., 2012. OGC city geography markup language (CityGML) encoding standard.
Gruen, A., 1998. TOBAGO—a semi-automated approach for the generation of 3-D building models. ISPRS journal of Photogrammetry and Remote Sensing 53, 108-118.
Haala, N., Kada, M., 2010. An update on automatic 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing 65, 570-580.
Habib, A., Kwak, E., Al-Durgham, M., 2011. Model-based automatic 3d building model generation by integrating lidar and aerial images. Archiwum Fotogrametrii, Kartografii i Teledetekcji 22.
Haines, E., 1994. Point in Polygon Strategies. Graphics Gems 4, 24-46.
Henn, A., Gröger, G., Stroh, V., Plümer, L., 2013. Model driven reconstruction of roofs from sparse LIDAR point clouds. ISPRS Journal of photogrammetry and remote sensing 76, 17-29.
Huang, H., Brenner, C., Sester, M., 2013. A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data. ISPRS Journal of photogrammetry and remote sensing 79, 29-43.
Julin, A., Jaalama, K., Virtanen, J.-P., Pouke, M., Ylipulli, J., Vaaja, M., Hyyppä, J., Hyyppä, H., 2018. Characterizing 3D city modeling projects: Towards a harmonized interoperable system. ISPRS International Journal of Geo-Information 7, 55.
Kada, M., Wichmann, A., 2012. Sub-surface growing and boundary generalization for 3D building reconstruction. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences I-3, 233-238.
Kedzierski, M., Fryskowska, A., 2014. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling. Sensors 14, 12070-12092.
Kocaman, S., Zhang, L., Gruen, A., Poli, D., 2006. 3D city modeling from high-resolution satellite images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 36.
Krarup, T., 1980. Gotterdammerung over least squares adjustment, Proc. 14th Congress of the International Society of Photogrammetry, pp. 369-378.
Kubik, K., Lyons, K., Merchant, D., 1988. Photogrammetric work without blunders. Photogrammetric Engineering and Remote Sensing 54, 51-54.
Kwak, E., 2013. Automatic 3D building model generation by integrating LiDAR and aerial images using a hybrid approach.
Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M., 2006. An automatic building reconstruction method: a structural approach using high resolution satellite images, 2006 International Conference on Image Processing. IEEE, pp. 1205-1208.
Laurini, R., Thompson, D., 1992. Fundamentals of spatial information systems. Academic press.
Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D., Mitra, N.J., 2011. Globfit: Consistently fitting primitives by discovering global relations, ACM SIGGRAPH 2011 papers, pp. 1-12.
Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. International journal of computer vision 60, 91-110.
Malihi, S., Zoej, M.V., Hahn, M., Mokhtarzade, M., Arefi, H., 2016. 3D building reconstruction using dense photogrammetric point cloud. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 3, 71-74.
McDonnell, R., Kemp, K., 1995. International GIS dictionary. John Wiley & Sons.
Morgan, M., Tempfli, K., 2000. Automatic building extraction from airborne laser scanning data. International Archives of Photogrammetry and Remote Sensing 33, 616-623.
National Research Foundation, 2018. Virtual Singapore. Retrieved from https://www.nrf.gov.sg/programmes/virtual-singapore (June 5, 2021)
Perera, G.S.N., Maas, H.-G., 2014. Cycle graph analysis for 3D roof structure modelling: Concepts and performance. ISPRS Journal of Photogrammetry and Remote Sensing 93, 213-226.
Pope, A.J., 1976. The statistics of residuals and the detection of outliers. US Department of Commerce, National Oceanic and Atmospheric Administration.
Pârvu, I.M., Remondino, F., Ozdemir, E., 2018. LOD2 Building Generation Experiences and Comparisons. Journal of Applied Engineering Sciences 8.
Pu, S., Vosselman, G., 2009. Knowledge based reconstruction of building models from terrestrial laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing 64, 575-584.
Schnabel, R., Wahl, R., Klein, R., 2007. Efficient RANSAC for point‐cloud shape detection, Computer graphics forum. Wiley Online Library, pp. 214-226.
Shimrat, M., 1962. Algorithm 112: position of point relative to polygon. Communications of the ACM 5, 434.
Singh, S.P., Jain, K., Mandla, V.R., 2013. Virtual 3D city modeling: techniques and applications. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 73-91.
Suveg, I., Vosselman, G., 2004. Reconstruction of 3D building models from aerial images and maps. ISPRS Journal of Photogrammetry and remote sensing 58, 202-224.
Svensk, J., 2017. Evaluation of aerial image stereo matching methods for forest variable estimation.
Takase, Y., Sho, N., Sone, A., Shimiya, K., 2003. Automatic generation of 3d city models and related applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 34.
Tutzauer, P., Haala, N., 2015. Façade reconstruction using geometric and radiometric point cloud information. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40, 247.
Verma, V., Kumar, R., Hsu, S., 2006. 3d building detection and modeling from aerial lidar data, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). IEEE, pp. 2213-2220.
Vermeij, M., Zlatanova, S., 2001. Semi-automatic 3D building reconstruction using Softplotter, Proceedings of the International Symposium on Geodetic, Photogrammetric and Satellite Technologies: Development and Integrated Applications, Sofia, 2001. Citeseer.
Wang, R., 2013. 3D building modeling using images and LiDAR: A review. International Journal of Image and Data Fusion 4, 273-292.
Wang, S., Cai, G., Cheng, M., Junior, J.M., Huang, S., Wang, Z., Su, S., Li, J., 2020. Robust 3D reconstruction of building surfaces from point clouds based on structural and closed constraints. ISPRS Journal of Photogrammetry and Remote Sensing 170, 29-44.
Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300-314.
Wu, G., Guo, Z., Shi, X., Chen, Q., Xu, Y., Shibasaki, R., Shao, X., 2018. A boundary regulated network for accurate roof segmentation and outline extraction. Remote Sensing 10, 1195.
Yalcin, G., Selcuk, O., 2015. 3D city modelling with Oblique Photogrammetry Method. Procedia Technology 19, 424-431.
Yu, D., Ji, S., Liu, J., Wei, S., 2021. Automatic 3D building reconstruction from multi-view aerial images with deep learning. ISPRS Journal of Photogrammetry and Remote Sensing 171, 155-170.
Yu, Q., Helmholz, P., Belton, D., 2017. Semantically enhanced 3D building model reconstruction from terrestrial laser-scanning data. Journal of Surveying Engineering 143, 04017015.
水土保持局技術研究發展小組, 2017. 地理空間資訊應用推廣綱要計畫.
內政部國土測繪中心, 2020. 多維度國家空間資訊服務平台. https://3dmaps.nlsc.gov.tw/
國家發展委員會, 2018. 國發會新聞稿-三維地理資訊未來發展趨勢.
蘇帕默, 2020. 基於 DSM 進行 LOD-1 三維建物模塑及其品質與精度評估. 國立成功大學測量及空間資訊學系研究所碩士論文.