| 研究生: |
游日亨 You, Ze-Hen |
|---|---|
| 論文名稱: |
可撓式塑膠基板上利用熱鎢絲化學氣相低溫沉積製作奈米晶矽薄膜電晶體研究 The Study of Nanocrystalline Silicon Thin Film Transistor on Flexible Plastic Substrate by Hot-Wire Chemical Vapor Deposition |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 奈米晶矽薄膜 、熱鎢絲化學氣象低溫沉積 、聚碳酸酯 、聚醯亞胺 、可撓式塑膠基板 |
| 外文關鍵詞: | Polyimide, Polycarbonate, Nanocrystalline Silicon Thin Film, Hot-Wire Chemical Vapor Deposition, Flexible Plastic Substrate |
| 相關次數: | 點閱:92 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文結合了可撓式塑膠基板、奈米晶矽薄膜和熱鎢絲化學氣相低溫沉積,製作可撓式奈米晶矽薄膜電晶體。可撓式塑膠基板具有外型輕薄、價格便宜且可彎曲的特質。奈米矽晶薄膜特性介於多晶矽(poly-Si)與非晶矽(a-Si)之間,可低溫下(<250℃)大面積沉積,其不但具有非晶矽薄膜的製程簡單,大面積成長的優點,且具有多晶矽薄膜的高遷移率及驅動電流大的優勢。熱鎢絲化學氣相沉積法則是成長速率高(6.5nm/min),製程簡單。
吾人利用聚碳酸酯(polycarbonate)和聚醯亞胺(polyimide)兩種可撓式基板材料,並研究不同製程,如將阻隔層平坦化,降低製成溫度(225℃)、縮短反應距離(4.5cm)和反應時間,製作奈米晶矽薄膜。並以場發射掃瞄式電子顯微鏡(FESEM)、原子力顯微鏡(AFM)檢測奈米晶矽薄膜表面形態,和用HP4145半導體參數分析儀,量測薄膜導電特性。結果發現聚醯亞胺基板較適合製作電晶體。以聚醯亞胺基板製作的可撓式奈米晶矽薄膜晶體,其開關電流比為1.16×103、場效遷移率為4.3(cm2/Vs)、臨界電壓為17.88伏特。這些結果不但堪與奈米晶矽薄膜晶體製作在傳統玻璃或矽基板上相比,而且較佳於傳統製作在玻璃基板上非晶矽電晶體。
In the thesis, we studied and optimized the different growing parameters such as using planarization barrier oxide, depositing temperature, and the distance between tungsten wire heater and substrate, and deposition time to prepare the nanocrystalline silicon thin films (nc-Si) on flexible plastic substrate by hot-wire chemical vapor deposition system (HWCVD). Both polycarbonate(PC) and polyimide(PI) were chosen as the flexible plastic substrate. The HW-CVD was adopted for its high deposition rate (6.5nm/min). Then, based on the optimized parameter, the nc-Si thin film transistors (nc-Si TFTs) were developed also on flexible plastic substrate. The nc-Si thin film has higher mobility and driving current than that of amorphous Si (a-Si) film, and can be uniformly deposited at low temperature (250℃). The film’s quality was examined with AFM and FESEM and I-V curve. The examination found the PI substrate is better for fabrication ns-Si TFT than the PC counterpart.
The ns-Si TFT on PI substrate, has current ratio of 1.16×103, drift mobility of 4.3(cm2/Vs), and the threshold voltage of 17.88(volt). These data are comparable to the ns-Si TFT on traditional Si or glass substrate, but are better than that of a-Si TFT on glass substrate.
[1] M.H. Lee, K.Y. Ho, P.C. Chen, C.C. Cheng, S.T. Chang, M. Tang, M.H. Liao and Y.H. Yeh, “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display” Tech. Dig. IEDM,
pp. 299-232. (2006).
[2] K. Bock, “Polymer Electronics Systems-Polytronics” IEEE Proc.,
July 2005, Vol. 93, No. 8, pp. 1400-1405. (2005).
[3] T.K. Chuang, M. Troccoli, P.C. Kuo, A. Jamshidi-Roudbari, M.
Hatalis, A.T. Voutsas, and T. Afentakis “Process Technology for
High-Resolution AM-PLED Displays on Flexible Metal-Foil
Substrates” Electrochemical and Solid-State Letters,10 (8) J92-J96.
(2007).
[4] François Templier, Bernard Aventurier, Patrick Demars, Jean Louis Botrel, Patrick Martin “Fabrication of high performance low temperature poly-silicon backplanes on metal foil for flexible active-matrix organic light emission diode displays” Thin Solid Films 515,7428–7432.(2007).
[5] Kanti Jain, Marc Klosner, Marc Zemel, and Shyam Raghunandan
“Flexible Electronics and Displays : High-Resolution, Roll-to-Roll, Projection Lithography and Photoablation Processing Technologies for High-Throughput Production” IEEE, Vol. 93, No. 8 , pp. 1500. AUGUST. (2005).
[6] Jin Yu, J.G. Kim , J.O. Chung, D.H. Cho, ”An elastic/plastic analysis of the intrinsic stresses in chemical vapor deposited diamond films on silicon substrates“ J. Appl. Phys.,Vol.88,No.3, pp. 1688-1694,(2000).
[7] Z. Suo, E. Y. Ma, H. Gleskova, S. Wagner “Mechanics of rollable and
Foldable Film-on-foil Electronics” Appl. Phys. Lett., Vol.74 ,pp.1177 -1179, (1999).
[8] Tsu-Jae King, Krishna C. Saraswat, “Polycrystalline Sillicon-
Germanium Thin Film Transistors” IEEE Trans. Electron Devices, Vol. 41, No.9, pp.1581-1591. (1994)
[9] A.T. Hatzopoulos, I. Pappas, D.H. Tassis, N. Arpatzanis, “ Analytical current-voltage model for nanocrystalline silicon thin-film transistors,” Applied Physics Letters, 89, 193504. (2006)
[10]林秉章,方炎坤 ”利用層疊氫原子化學回火及電漿輔助化學氣相
沉積技術成長低溫奈米矽鍺薄膜之研究”,國立成功大學電機工程
學系碩士論文,民94年6月。
[11]Sigurd Wagner, Helena Gleskova, I-Chun Cheng, Ming Wu, “Silicon
for thin-film transistors,” Thin Solid Films , 430 , pp.15–19. (2003).
[12]Czang-Ho Lee, Denis Striakhilev, Arokia Nathan, “Stability of
nc-Si:H TFTs With SiliconNitride Gate Dielectric,” IEEE transactions
on electron on devices, 54, pp.45-51.(2007).
[13]B. Mebarki, S. Sumiya , R. Yoshida , M. Ito , M. Hori , T. Goto ,S. Samukawa, T. Tsukada“Polycrystalline silicon film formation at low temperature using ultra-high-frequency plasma enhanced chemical vapor deposition” Materials Letters, Vol. 41, 16-19 (1999).
[14]D. Hong ,“Process Development and Modeling of Thin-Film Transistors.”Master's Thesis, Oregon State University (2005)
[15] J. Puigdollers, C. Voz, A. Orpella, I. Martin, D. Soler, M. Fonrodona, J. Bertomeu, J. Andreu, R. Alcubilla, “Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD” Journal of Non-Crystalline Solids, 299–302, pp.400–404 (2002).
[16]K. Lee, M. Shur, T.A. Fjeldly, T. Ytterda, “Semiconductor device modeling for VLSI” 1 ed. New jersey:Prentice Hall, Inc.(1993)
[17]M.S. Shur, H.C. Slade, M.D. Jacunski, A.A. Owusu, T. Ytterdal, “SPICE models for amorphous silicon and polysilicon thin film transistors,” Journal of the Electrochemical Society, 144, pp.2833-9(1997)
[18]Dosev, Dosi Konstantinov, “Fabrication, characterisation and modelling of nanocrystalline silicon thin-film transistors obtained by hot-wire chemical vapour deposition.” in PhD thesis. Barcelona: Universitat Politècnica de Catalunya (UPC)
[19]Sang-Myeon Han, Joong-Hyun Park, Hee-Sun Shin, Young-Hwan Choi, Min-Koo Han,“High Performance Nanocrystalline-Si TFT Fabricated at 150℃ Using ICP-CVD,” IEEE(2005)
[20]翁得期,“化學氣相沉積法低溫成長奈米多晶矽薄膜及氧化矽奈米線之研究,”國立成功大學化工所博士論文。
[21]H. Wiesmann, A.K. Gosh, T. McMahon, M. Strongin, “a-Si : H produced by high-temperature thermal decomposition of silane,” Appl. Phys., 50, pp.3752(1979)
[22]H. Matsumura, H. Tachibana,“Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2,”Appl. Phys. Lett., 47, pp. 833 (1985)
[23]D. Beeman, R. Tsu, M.F. Toorpe, “Structural information from the Raman spectrum of amorphous silicon” Phys. Rev. B, 32, pp. 874 (1985)
[24]R.E.I. Schoropp, K.F. Feenstra, E.C. Molenbroek, H. Meiling, J.K.Rath, ”Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapor deposition,” Phil. Mag. B, 76, pp.309-21(1997)
[25]David Soler i Vilamitjana, “Amorphous Silicon Solar Cells Obtained by Hot-Wire Chemical Vapor Deposition,” Memòria presentada per optar al grau de Doctor, setembre de 2004
[26]KF Feenstra, REI Schropp, WF Van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,”Appl. Phy., 85, pp. 6843(1999)
[27]P. Roca i Cabarrocas, S. Hamma, “Microcrystalline silicon growth on a-Si:H: effects of hydrogen,” Thin Solid Films, 337, pp. 23-26(1999)
[28]F. Feenstra, P.F.A. Alkemade, E. Algra, R.E.I. Schropp, W.F. van der Weg, “Effect of post-deposition treatments on the hydrogenation of hot-wire deposited amorphous silicon films,” Progress in Photovoltaics: Research and Applications, 7, pp. 341-351(1999)
[29]A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, ”Electrical properties of amorphous silicon transistors and MIS-devices:comparative study of top nitride and bottom nitride configurations”, J. Electrochem. Soc., vol. 140, pp. 3679-83, (1993).