| 研究生: |
張祖林 Chang, Zu-Lin |
|---|---|
| 論文名稱: |
機械手臂輔助製造應用於輕量曲面木結構之設計與建造 Design and Fabrication of a Lightweight Curved Surface Timber Structure Aided by Robotic Arms |
| 指導教授: |
杜怡萱
Tu, Yi-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 機械手臂 、智慧製造 、輕量結構 、木曲面 、實構 |
| 外文關鍵詞: | robotic arm, intelligent manufacturing, lightweight structure, timber curved surface, practical construction |
| 相關次數: | 點閱:176 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業4.0的概念於2011年提出,主要分為網絡物理系統、物聯網和智慧工廠三個部分,企圖提高生產效率,並嘗試開發全新的生產模式。本研究希望利用機械手臂提供技術援助,建立人機協作關係,以解決現今台灣營建業界勞動力減少的問題。同時針對不同需求,達成大量客製化,以克服當前建築界逐漸依賴參數化設計而產生的複雜造型建造問題,並降低工業製程的技術門檻。本研究著眼於將工業4.0實踐於建築領域的實際操作,試圖建立一個涵蓋設計發展、材料試驗、結構分析、機械手臂輔助製造和實地人力搭建的完整流程,以供後續建築產業轉型升級參考。
本研究以木材作為輕量曲面結構之材料,利用形態抵抗使此曲面能夠成為結構與造型的共同解,透過可由漸進斜率變化之直線所構成之雙曲拋物面做為設計發展原型,擷取、鏡射並簡化成線構架模型後,再生成內肋、外拱與曲面格線模型。三種構件利用本研究設計之「斜槽搭接」與深淺不一之卡槽規劃組裝方式。使用機械手臂輔助製造多樣化的構件,透過夾具、機械手臂的六軸性能,即可進行多角度、深淺不一的開槽或造型加工,大量減少輔具與專業人力之需求。
設計發展完成後,本研究對使用於實構之國產南方松進行基本材料試驗與含水率試驗,並以試驗結果作為結構分析後構件強度檢核的依據。接著使用SAP2000進行結構分析,分析結果顯示內肋為系統主要傳力構件,外拱為次要傳力構件,曲面格線受力最小。最後對整體結構與各構件之強度進行檢討,並完成結構之基礎與各接合部之設計。
製造階段利用電腦輔助製造軟體規劃銑削構件的路徑,模擬機械手臂碰撞行為,銑削過程發生之震刀問題則利用程式修改夾持定位點即可大幅改善,最後由研究者本人一人進行定位與操作機械手臂,花費101小時完成所有構件銑削。在設計之「斜槽搭接」與各卡槽協助定位下,動用4位工作人員,於一天內花費9小時完成組裝,整體結構相較原設計高度誤差約為0.67%,結構完成於2022 / 09 / 25,截至2023 / 07 / 12,已於戶外展示達290天,並無明顯破壞與變形。
本研究成功地將工業4.0的概念應用於建築領域,通過機械手臂協助,達成高效率且能對應多樣性的製造流程,建立全新的人機協作關係。本研究成果克服了建築界在參數化設計下所產生的複雜造型建造問題,降低了工業製程的技術門檻。最終結構成品經過長達290天的戶外展示,未出現明顯的破壞與變形,證明本研究所採用技術之可行性。
In this study, wood is used as the material of the light-weight curved surface structure, and the “Form resistant” is used to make the surface a common solution of structure and shape. The hyperbolic paraboloid formed by straight lines with gradual slope changes is used as the design development prototype. Capturing and mirroring the surface on the hyperbolic paraboloid, then simplifying it into a frame model, the inner rib, outer arch and surface grid models are generated. The three components use the "Diagonal groove overlap" designed in this study and the slots of different depths for subsequent positioning and assembly. Use the robotic arm to assist in the manufacture of diverse components. Through the six-axis performance of the fixture and the robotic arm, you can perform multi-angle, different depths of slotting or molding processing, greatly reducing the need for auxiliary tools and professional manpower.
After the design development is completed, this study conducts basic material tests and moisture content tests on the southern pine used in the actual structure, and uses the test results as the basis for checking the strength of the components after structural analysis. Then use SAP2000 for analysis, and the analysis results show that the inner rib is the main force-transmitting component of the system. Finally, review the overall structure and the strength of each component, and complete the design of the foundation of the structure and the joints.
In the manufacturing stage, computer-aided manufacturing software was used to plan the path of the milling components, and the collision behavior of the robotic arm was simulated. The problem of tool vibration during the milling process could be greatly improved by modifying the clamping positioning point with the program. Finally, the researcher myself positioned and operated the robotic arm, and spent 101 hours to complete the milling of all components. With the help of the designed "Diagonal groove overlap" and the positioning of each slot, it took 4 workers to complete the assembly in 9 hours. The overall structure has a height error of about 0.67% compared with the original design. The structure was completed on September 25, 2022. As of July 12, 2023, it has been displayed outdoors for 290 days without obvious damage or deformation.
1. Hermann M., Pentek T., Otto B. (2016). “ Design principles for industrie 4.0 scenarios ”, Proceedings of Hawaii International Conference on System Sciences, 3928-3937.
2. Lavalle J., Vroman R., & Keshet Y. (2011). “Automated folding of sheet metal components with a six-axis industrial robot.”, Proceedings of Annual Conference of the Association for Computer Aided Design in Architecture 2011, Oct. 11-16, Calgary, Canada, 144-151.
3. Reichert S., Schwinn T., La Magna R., Waimer F., Knippers J., Menges A. (2014). “Fibrous structures: An integrative approach to design computation, simulation and fabrication for lightweight, glass and carbon fibre composite structures in architecture based on biomimetic design principles,” Computer-Aided Design, 52, 27-39.
4. Bailly D., Bambach M., Hirt G., Pofahl T., Herkrath R., Heyden H., & Trautz M. (2014). “Manufacturing of innovative self-supporting sheet-metal structures representing freeform surfaces,” Proceedings of International Conference on Manufacture of Lightweight Components, Apr. 3-4, Dortmund, Germany, 51- 56.
5. Vazquez A.N. & Jabi W. (2015). “A collaborative approach to digital fabrication: a case study for the design and production of concrete ‘pop-up’ structures,” International Journal of Architectural Computing, 13(2), 195-216.
6. Aejmelaeus-Lindström P., Willmann J., Tibbits S., Gramazio F., & Kohler M. (2016). “Jammed architectural structures: towards large-scale reversible construction,” Granular Matter, 18:28.
7. Culver, R., Koerner, J., & Sarafian, J. (2016). “Fabric forms: The robotic positioning of fabric formwork,” Robotic Fabrication in Architecture, Art And Design, 107–121.
8. Pofahl T., Della Puppa G., Trautz M., Bailly D., Schmitz R., & Hirt G. (2017). “Self-supporting free-form structures made of individual sheet metal panels,” Proceedings of the IASS Annual Symposium 2017, Sep. 25-28, Hamburg, Germany.
9. Burger J., Lloret-Fritschi E., Scotto F., Demoulin T., Gebhard L., Mata-Falcón J., Gramazio F., Kohler M., & Flatt R.J. (2020). “Eggshell: ultra-thin three-dimensional printed formwork for concrete structures,” 3D Printing and Additive Manufacturing, 7(2), 49-59.
10. Hack N., Dörfler K., Walzer A.N., Wangler T., Mata-Falcón J., Mata-Falcón J., Kumar N., Buchli J., Kaufmann W., & Flatt R.J. (2020). “Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: A real scale architectural demonstrator”, Automation in Construction, Volume 115, 103197.
11. Wagner H.J., Alvarez M., Kyjanek O., Buck M., & Menges A. (2020). “ Flexible and transportable robotic timber construction platform–TIM ”, Automation in Construction, Volume 120, 103400.
12. ASTM. (2000). “Standard Test Methods for Small Clear Specimens of Timber.” D143-94.
13.中華民國國家標準(2003)。木材含水率試驗法,CNS 452。
14. ASCE. (2010). “Minimum Design Loads for Buildings and Other Structures.” ASCE-7.
15. ANSI/AWC. (2012). “National Design Specification for Wood Construction.” NDS-2012.
16.中華民國內政部營建署(2021年1月26號)木構造建築物設計及施工技術規範。
17.中華民國內政部營建署(2014年12月3號)建築物耐風設計規範及解說。
18.中華民國內政部營建署(2021年3月2號)混凝土結構設計規範。