簡易檢索 / 詳目顯示

研究生: 汪聖翔
Wang, Shengh-Siang
論文名稱: 電動機車故障之預測與診斷系統
Prediction and Diagnosis System for Malfunctions of Electric Scooters
指導教授: 邵揮洲
Shaw, Heiu-Jou
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 56
中文關鍵詞: 電動機車振動量測故障診斷
外文關鍵詞: Electric Scooter, Vibration Measurement, Malfunction Diagnosis
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電動機車運轉時會產生振動,長時間的振動會造成結構的疲勞損壞,而結構的振動資訊經常被用來判斷結構的狀態,因為不同結構的振動會有不同的振動模態。因此本文主要在設計一套電動機車的故障預測診斷系統,利用振動資訊快速檢測電動機車的狀態及預測可能發生之故障狀態。
    本研究整合加速度規、訊號擷取模組及LabVIEW發展量測診斷系統,利用電動機車的振動訊號來診斷預測可能發生的故障問題,在檢測診斷之前需先找到特徵判別資訊,利用頻域、倍頻分析及統計方法找出到各種狀態之頻率特徵。本文針對馬達軸螺絲鬆脫、前輪軸螺絲鬆脫、避震器異常等故障狀態來做故障判別,依據狀態頻率特徵所找到的故障判別資訊,判斷電動機車是否含有故障訊號的特徵並告知故障類型,以達到預測診斷效果。
    經由實驗結果顯示,診斷正常狀態下的準確率為93.33%、馬達軸螺絲鬆脫狀態的準確率95.56%、前輪軸螺絲鬆脫狀態的準確率90.56%及避震器異常狀態準確率為87.8%。就此結果而言,將狀態頻率特徵判斷應用在電動機車診斷上,可以有效診斷電動機車的狀態及故障種類。

    Information on structural vibration are usually utilized to judge its status. Because, vibration on different structural will cause different vibration modes, even small differences. Electric scooter used in the process, the structural is likely to damage due to vibration fatigue. So, this research mainly focuses on designing a malfunction-predicting system for electric scooter in order to detect status of the electric scooter quickly and foresee a malfunction that may happen in the future.
    An accelerometer and data acquisition module and LabVIEW are integrated to develop a measurement and diagnosis system in this thesis. By utilizing vibration signals from the electric scooter to diagnose the possible malfunction, before diagnosing, features are needed for identifying information. Frequency domain information, frequency multiplication analysis, and statistics are used to detect a certain status’s vibrational features. This thesis aims to address the screw problem of the motor shaft and front axle, shock absorber abnormalities, etc. The malfunction status is used to identify the fault based on the status frequency feature for locating the fault and identifying the information. Furthermore, it is evaluated whether the electric scooter has the malfunction signal feature to determine the type of fault in order to achieve a predictive diagnosis.
    The experiment shows that the diagnostic accuracy of normal status is 93.33%, a loose screw in the motor shaft has 95.56%, a loose screw in the front axle has 90.56%, and a shock absorber abnormality has 87.8%. The results show that the frequency feature can effectively diagnose the status of an electric scooter.

    Abstract in Chinese..........................i Abstract ....................................ii Acknowledgement..............................iv Table of Contents............................v List of Figures..............................vii List of Table................................xi Chapter 1. Introduction......................1 1.1 Foreword.................................1 1.2 Motivation and Purpose...................2 1.3 Research Method..........................3 Chapter 2. Discussion on Scooter Vibration Measurement and Malfunction Diagnosis........................5 2.1 The Hazard and Design Specifications of Scooter Vibration................................5 2.2 Vibration Measurement and Analysis.......6 2.3 Malfunction Diagnosis....................8 Chapter 3. Data Acquisition and Analysis.....10 3.1 Experiment Equipment.....................10 3.1.1 Introduction of Accelerometer..........10 3.1.2 Data Acquisition Card..................12 3.2 System Design............................14 3.2.1 Vibration Signal Acquisition and Analysis .......................................14 3.2.2 Verifying the Correctness of the Measurement System .......................................18 3.2.3 Method for Designing Human Interface...20 Chapter 4. Design of Prediction and Diagnosis System ..................................22 4.1 Parameter Setting........................22 4.2 Design of Diagnosis System...............28 4.2.1 Features of Handle Position Status.....29 4.2.2 Features of Motor Position Status......34 4.2.3 Features of Step Position Status.......39 4.2.4 Features of Seat Position Status.......44 Chapter 5. Results and Discussion............49 Chapter 6. Conclusion........................53 6.1 Conclusion...............................53 6.2 Suggestions .............................53 References ..................................54

    [1] Environmental Protection Administration Executive Yuan, R.O.C(Taiwan), air emissions inventory, Retrieved July 3, 2016, from http://teds.epa.gov.tw/new_main2-0-1.htm.
    [2] Directorate General of Highways, Ministry of Transportation and Communications R.O.C, Number of Registered Motor Vehicles - Grand Total, Retrieved July 1, 2016, from http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301.
    [3] Chang, M.K., Lu, S.Y.(2008), “Review of Whole Body Vibration Exposure Evaluation”, Journal of Occupational Safety and Health, Vol.16, No.2, pp.152-163.
    [4] Dong, S., Zhu, Y.Q.(2004), “Effects of Environmental Vibration on Man”, Noise and Vibration Control, Vol.3, pp.5-9.
    [5] Mechanical vibration and shock Evaluation of human exposure to whole-body vibration, ISO2631-1(1997).
    [6] Pan, Y.T., Lin, G.Y., Liu, J.J., Chen, H.C., Lu, S.Y.(2010), “Study on Risk Assessment of Whole-Body Vibration Exposure”, Annual Meeting and 22nd Symposium of Acoustical Society of the Republic of China, pp.60-71.
    [7] Oh, J.E., Huh, Y., Ahn, J.,C.Y.(1994), “Identification of Vibration-Induced Noise Radiated from Compressor shell”, International Compressor Engineering Conference, pp. 990.
    [8] Hsu, L.Y.(2011), Vehicle Dynamics Estimation and Prediction Systems, Doctoral Dissertation, Department of Mechanical Engineering, National Chiao Tung University.
    [9] Wang, B.T., Wang, W.C., Wang, T.W., Huang, C.S. (2013), “Machinery Noise Measurement and Diagnosis Customized Procedure: Application to Twin Screw Compressor”, National Conference on Sound and Vibration, 21th, pp.57-64.
    [10] Lin, H.Y.(2008), Measurement System and Quantitative Analysis of Total Body Vibration in Humans, Master’s Thesis, Department of Electrical Engineering, National Cheng Kung University.
    [11] Lu, Y.J.(2010), Finite Element Harmonic Analysis of Motorcycle Structure and Application, Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University.
    [12] Hung, S.H.(2008),A Vibrational Type Fast Damage Diagnosis Technique for Beam Element, Master’s Thesis, Department of Civil Engineering, National Central University.
    [13] Chou, I.W., Wang, J.E.(1998), “Vibration Measurement, Cause Analysis, Defects Diagnosis and Health Monitoring of Machine Tools”, The Proceedings of National Conference on the Society of Sound and Vibration, 6th, pp.79-88.
    [14] Chang, W.K., Li, W.F., Mei, H.T., Chen, C.H.(2011), “Structural Health Monitoring and Damage Diagnosis”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.38, No.3, pp.17-25.
    [15] Li, W.L., Chiu, H.(2011), “A study on diagnosing looseness of bridge structure using vibration signals”, National Conference on Sound and Vibration, 19th, pp.1-7.
    [16] Wang, J.E., Liu, J.H.(2010), “Failure Mode Analysis and Diagnostics of Large Wind Turbine Systems”, Industrial Machinery Magazine, Vol.331, No.10, pp.26-32.
    [17] 林士凱、林汎褀、高烱鐘(2013),虛擬儀控程式設計:LabVIEW 201X,新北市:高立圖書有限公司。
    [18] Anderson, D.R., Sweeney, D.J., Williams, T.A., Camm, .J.D., Cochran, J.J. (2014), Statistic for Business and Economics, 12e, South-Western: Cengage Learning.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE