| 研究生: |
賴文鋒 Lai, Wen-Feng |
|---|---|
| 論文名稱: |
利用薄膜沉積技術製作突狀結構應用於具有圖樣化電極的染料敏化太陽電池 Application of protrusive structures made by thin-film deposition technique on dye-sensitized solar cells with patterned electrodes |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
黃家逸
Huang, Chia-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 染料敏化太陽電池 、磁控濺鍍 、突狀週期結構 |
| 外文關鍵詞: | dye-sensitized solar cells, magnetron sputtering, periodic protruding structures |
| 相關次數: | 點閱:81 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傳統磁控濺鍍系統中,電漿產生的離子會持續轟擊靶材,所形成的材料蒸氣會以幅射狀擴散方式附著在試片基板表面,並經由核核過程逐漸聚集而形成薄膜,但此種蒸氣的擴散方式並不易在高深寬比的結構上沉積完整薄膜。本論文所開發的磁控濺鍍系統,藉由改良真空腔體的內部機構設計,包含氣體導流技術與靶材對向配置,可產生「聚焦式電漿分佈」,使本系統能夠在高深寬比的突狀結構上沉積高度完整性薄膜。實驗中先以微影製程製作週期性突狀結構,再使用改良式磁控濺鍍系統個別沉積二氧化鈦薄膜與鉑金屬薄膜,最後將光阻移除後即可留下高度完整性的突狀週期結構,其結構高度為90奈米、線寬為15微米、週期為60微米,以及線長為5毫米。將二氧化鈦突狀週期結構應用於染料敏化太陽能電池之光電極,從實驗數據中顯示二氧化鈦與透明導電電極間的接觸阻抗有明顯降低,且電子生命週期也有增加,表示相較於傳統零維度奈米粒子結構,二氧化鈦突狀週期結構可提供激發態電子特定傳遞路徑,降低電子再結合率,使電子傳導至電極外部的效率增加,進而使得光電流從1.78 毫安培明顯上升至2.26 毫安培。基於光電極使用二氧化鈦突狀週期結構,同時將鉑金屬突狀週期結構應用於染料敏化太陽能電池之對電極,光電流從2.35 毫安培明顯上升至2.60 毫安培,此結果可歸因於鉑金屬突狀週期結構除了可在電解液接面處產生較大接觸面積,有助於電子注入效率,同時產生較明顯的光反射現象,有助於提升元件內部二次光吸收效率,進而提升染料敏化太陽能電池元件之光電流值。預期未來可藉由調整突狀結構參數,進一步優化染料敏化太陽能電池元件之光電效應。
In traditional magnetron sputtering systems, the ions generated by plasma continuously bombard the target material, and the resulting material vapor adheres to the surface of the sample substrate in a radial diffusion manner, gradually accumulating to form a thin film through a nucleation process. However, this diffusion method is not easy to deposit a complete film on structures with high aspect ratios. The magnetron sputtering system developed in this paper improves the internal mechanical design of the vacuum chamber, including gas flow technology and target opposite configuration, to produce a "focused plasma distribution," allowing the system to deposit highly integrity films on structures with high aspect ratios. In the experiment, periodic protruding structures were first produced using photolithography, and then titanium dioxide thin film and platinum metal thin film were individually deposited using the improved magnetron sputtering system. Finally, after removing the photoresist, a highly integrity periodic protruding structure was left with a height of 90 nm, a line width of 15 μm, a period of 60 μm, and a line length of 5 mm. When the titanium dioxide periodic protruding structure was applied to the photoelectrode of dye-sensitized solar cells, the experimental data showed that the contact impedance between the titanium dioxide and the transparent conductive electrode was significantly reduced, and the electron lifetime was increased. This indicates that compared to traditional zero-dimensional nanoparticle structures, the titanium dioxide periodic protruding structure can provide a specific pathway for excited-state electrons to reduce electron recombination rates, increase the efficiency of electron conduction to the outside of the electrode, and thereby increase the photocurrent from 1.78 mA to 2.26 mA. Based on the use of the titanium dioxide periodic protruding structure in the photoelectrode and the platinum metal periodic protruding structure in the counter electrode of the dye-sensitized solar cells, the photocurrent increased significantly from 2.35 mA to 2.60 mA. This result can be attributed to the fact that the platinum metal periodic protruding structure not only generates a larger contact area at the electrolyte interface, which helps improve electron injection efficiency, but also produces a more significant light reflection phenomenon, which helps improve the secondary light absorption efficiency within the device and thereby increase the photocurrent value of the dye-sensitized solar cell. It is expected that in the future, by adjusting the parameters of the protruding structure, the photoelectric effects of dye-sensitized solar cell devices can be further optimized.
[1]. Zhaoqing Sun, Xiaoqing Chen, Yongcai He, Jingjie Li, Jianqiang Wang, Hui Yan, and Yongzhe Zhang, “Toward Efficiency Limits of Crystalline Silicon Solar Cells: Recent Progress in High-Efficiency Silicon Heterojunction Solar Cells,” Advanced Energy Materials, vol.12, p.2200015 (2022).
[2]. D. Akira Engelbrecht and Thomas Tiedje, “Temperature and Intensity Dependence of the Limiting Efficiency of Silicon Solar Cells,” IEEE Journal of Photovoltaics, vol.11, p.73 (2021).
[3]. Sayak Bhattacharya and Sajeev John, “Photonic crystal light trapping: Beyond 30% conversion efficiency for silicon photovoltaics,” APL Photonics, vol.5, p.020902 (2020).
[4]. L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici, “Silicon solar cells: toward the efficiency limits,” Advances in Physics: X, vol.4, p.1548305 (2019).
[5]. Asman Tamang, Hitoshi Sai, Vladislav Jovanov, Koji Matsubara, and Dietmar Knipp, “Silicon Thin-Film Solar Cells Approaching the Geometric Light-Trapping Limit: Surface Texture Inspired by Self-Assembly Processes,” ACS Photonics, vol.5, p.2799 (2018).
[6]. Corsin Battaglia, Andres Cuevas, and Stefaan De Wolf, “High-efficiency crystalline silicon solar cells: status and perspectives,” Energy & Environmental Science, vol.9, p.1552 (2016).
[7]. Chog Barugkin, Thomas Allen, Teck K. Chong, Thomas P. White, Klaus J. Weber, and Kylie R. Catchpole, “Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence,” Optics Express, vol.23, p.A391 (2015).
[8]. Keiichiro Masuko, Masato Shigematsu, Taiki Hashiguchi, Daisuke Fujishima, Motohide Kai, Naoki Yoshimura, Tsutomu Yamaguchi, Yoshinari Ichihashi, Takahiro Mishima, Naoteru Matsubara, Tsutomu Yamanishi, Tsuyoshi Takahama, Mikio Taguchi, Eiji Maruyama, and Shingo Okamoto, “Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell,” IEEE Journal of Photovoltaics, vol.4, p.1433 (2014).
[9]. Hairen Tan1, Laura Sivec, Baojie Yan, Rudi Santbergen, Miro Zeman, and Arno H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Applied Physics Letters, vol.102, p.153902 (2013).
[10]. Tatsuo Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Materials, vol.2, p.96 (2010).
[11]. Martin A. Green, “The path to 25% silicon solar cell efficiency: History of silicon cell evolution,” Progress in Photovoltaics, vol.17, p.183 (2009).
[12]. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Solar Energy Materials and Solar Cells, vol.91, p.238 (2007).
[13]. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics, vol.101, p.093105 (2007).
[14]. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Progress in Photovoltaics, vol.12, p.113 (2004).
[15]. E. Radziemska, “The effect of temperature on the power drop in crystalline silicon solar cells,” Renewable Energy, vol.28, p.1 (2003).
[16]. Armin G Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Progress in Photovoltaics, vol.8, p.473 (2000).
[17]. J. Zhao and M.A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Transactions on Electron Devices, vol.38, p.1925 (1991).
[18]. Andrew W. Blakers, Aihua Wang, Adele M. Milne, Jianhua Zhao, and Martin A. Green, “22.8% efficient silicon solar cell,” Applied Physics Letters, vol.55, p.1363 (1989).
[19]. T. Tiedje, E. Yablonovitch, G.D. Cody, and B.G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Transactions on Electron Devices, vol.31, p.711 (1984).
[20]. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Applied Physics Letters, vol.28, p.671 (1976).
[21]. George T. Nelson, Julia R. D’Rozario, and Seth M. Hubbard, “Finite difference time domain simulations of absorption enhancement in thin GaAs solar cells with textured back surface reflectors,” Solar Energy Materials and Solar Cells, vol.242, p.111757 (2022).
[22]. Julia R. D’Rozario, Stephen J. Polly, George T. Nelson, and Seth M. Hubbard, “Thin Gallium Arsenide Solar Cells With Maskless Back Surface Reflectors,” IEEE Journal of Photovoltaics, vol.10, p.1681 (2020).
[23]. Shi Liu, Weiquan Yang, Jacob Becker, Ying-Shen Kuo, and Yong-Hang Zhang, “Non-Lambertian Reflective Back Scattering and Its Impact on Device Performance of Ultrathin GaAs Single-Junction Solar Cells,” IEEE Journal of Photovoltaics, vol.5, p.832 (2015).
[24]. C. Colombo, M. Heiβ, M. Grätzel, and A. Fontcuberta i Morral, “Gallium arsenide ?-?-? radial structures for photovoltaic applications,” Applied Physics Letters, vol.94, p.173108 (2009).
[25]. K. A. Bertness, Sarah R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, “29.5%‐efficient GaInP/GaAs tandem solar cells,” Applied Physics Letters, vol.65, p.989 (1994).
[26]. A. Urbaniak, A. Czudek, A. Eslam, R. Wuerz, and M. Igalson, “Consequences of grain boundary barriers on electrical characteristics of CIGS solar cells,” Solar Energy Materials and Solar Cells vol.253, p.112252 (2023).
[27]. Chengwan Zhu, Wu Liu, Yaoyao Li, Xiaomin Huo, Haotian Li, Kai Guo, Bo Qiao, Suling Zhao, Zheng Xu, Honge Zhao, and Dandan Song, “Key factors governing the device performance of CIGS solar cells: Insights from machine learning,” Solar Energy, vol.228, p.45 (2021).
[28]. Thomas Feurer, Patrick Reinhard, Enrico Avancini, Benjamin Bissig, Johannes Löckinger, Peter Fuchs, Romain Carron, Thomas Paul Weiss, Julian Perrenoud, Stephan Stutterheim, Stephan Buecheler, and Ayodhya N. Tiwari, “Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications,” Progress in Photovoltaics, vol.25, p.645 (2017).
[29]. Neelkanth G. Dhere, “Toward GW/year of CIGS production within the next decade,” Solar Energy Materials and Solar Cells, vol.91, p.1376 (2007).
[30]. M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells,” Solar Energy, vol.77, p.749 (2004).
[31]. Alessandro Romeo and Elisa Artegiani, “CdTe-Based Thin Film Solar Cells: Past, Present and Future,” Energies, vol.14, p.1684 (2021).
[32]. J. D. Major, R. E. Treharne, L. J. Phillips, and K. Durose, “A low-cost non-toxic post-growth activation step for CdTe solar cells,” Nature, vol.511, p.334 (2014).
[33]. M. Gloeckler, I. Sankin, and Z. Zhao, “CdTe Solar Cells at the Threshold to 20% Efficiency,” IEEE Journal of Photovoltaics, vol.3, p.1389 (2013).
[34]. J. Perrenoud, L. Kranz, C. Gretener, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “A comprehensive picture of Cu doping in CdTe solar cells,” Journal of Applied Physics, vol.114, p.174505 (2013).
[35]. J. Britt and C. Ferekides, “Thin‐film CdS/CdTe solar cell with 15.8% efficiency,” Applied Physics Letters, vol.62, p.2851 (1993).
[36]. Xuewei Zhang, Yuzheng Guo, Daping Chu, and John Robertson, “Enhanced photovoltaic properties of halide perovskites due to multi-centered X–B–X bonding and p–p orbital coupling,” Journal of Applied Physics, vol.133, p.115701 (2023).
[37]. Benjamin D. Chrysler and Raymond K. Kostuk, “A Comparison of Spectrum-Splitting Configurations for High-Efficiency Photovoltaic Systems With Perovskite Cells,” IEEE Journal of Photovoltaics, vol.12, p.1477 (2022).
[38]. Xue Lai, Wenhui Li, Xiaoyu Gu, Hui Chen, Yuniu Zhang, Gongqiang Li, Ren Zhang, Dongyu Fan, Feng He, Nan Zheng, Jiahao Yu, Rui Chen, Aung Ko Ko Kyaw, and Xiao Wei Sun, “High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air,” Chemical Engineering Journal, vol.427, p.130949 (2022).
[39]. Philipp Tockhorn, Johannes Sutter, Alexandros Cruz, Philipp Wagner, Klaus Jäger, Danbi Yoo, Felix Lang, Max Grischek, Bor Li, Jinzhao Li, Oleksandra Shargaieva, Eva Unger, Amran Al-Ashouri, Eike Köhnen, Martin Stolterfoht, Dieter Neher, Rutger Schlatmann, Bernd Rech, Bernd Stannowski, Steve Albrecht, and Christiane Becker, “Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells,” Nature Nanotechnology, vol.17, p.1214 (2022).
[40]. Waseem Raja, Michele De Bastiani, Thomas G. Allen, Erkan Aydin, Arsalan Razzaq, Atteq ur Rehman, Esma Ugur, Aslihan Babayigit, Anand S. Subbiah, Furkan H. Isikgor, and Stefaan De Wolf, “Photon recycling in perovskite solar cells and its impact on device design,” Nanophotonics vol.10, p.2023 (2021).
[41]. David P. McMeekin, Suhas Mahesh, Nakita K. Noel, Laura M. Herz, Michael B. Johnston, and Henry J. Snaith, “Solution-Processed All-Perovskite Multi-junction Solar Cells,” Joule, vol.3, p.387 (2019).
[42]. Ian L. Braly, Dane W. deQuilettes, Luis M. Pazos-Outón, Sven Burke, Mark E. Ziffer, David S. Ginger, and Hugh W. Hillhouse, “Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency,” Nature Photonics, vol.12, p.355 (2018).
[43]. Yaoguang Rong, Yue Hu, Anyi Mei, Hairen Tan, Makhsud I. Saidaminov, Sang Il Seok, Michael D. Mcgehee, Edward H. Sargent, and Hongwei Han, “Challenges for commercializing perovskite solar cells,” Science, vol.361, p.eaat8235 (2018).
[44]. Nam-Gyu Park, “Perovskite solar cells: an emerging photovoltaic technology,” Materialstoday, vol.18, p.65 (2015).
[45]. Martin A. Green, Anita Ho-Baillie, and Henry J. Snaith, “The emergence of perovskite solar cells,” Nature, vol.8, p.506 (2014).
[46]. Zhong Zheng, Jianqiu Wang, Pengqing Bi, Junzhen Ren, Yafei Wang, Yi Yang, Xiaoyu Liu, Shaoqing Zhang, and Jianhui Hou, “Tandem Organic Solar Cell with 20.2% Efficiency,” Joule, vol.6, p.171 (2022).
[47]. Leiping Duan and Ashraf Uddin, “Progress in Stability of Organic Solar Cells,” Advanced Science, vol.7, p.1903259 (2020).
[48]. Mikkel Jørgensen, Jon E. Carlé, Roar R. Søndergaard, Marie Lauritzen, Nikolaj A. Dagnæs-Hansen, Sedi L. Byskov, Thomas R. Andersen, Thue T. Larsen-Olsen, Arvid P.L. Böttiger, Birgitta Andreasen, Lei Fu, Lijian Zuo, Yao Liu, Eva Bundgaard, Xiaowei Zhan, Hongzheng Chen, and Frederik C. Krebs, “The state of organic solar cells—A meta analysis,” Solar Energy Materials and Solar Cells, vol.119, p.84 (2013).
[49]. M.C. Scharber and N.S. Sariciftci, “Efficiency of bulk-heterojunction organic solar cells,” Progress in Polymer Science, vol.38, p.1929 (2013).
[50]. Martin Kaltenbrunner, Matthew S. White, Eric D. Głowacki, Tsuyoshi Sekitani, Takao Someya, Niyazi Serdar Sariciftci, and Siegfried Bauer, “Ultrathin and lightweight organic solar cells with high flexibility,” Nature Communications, vol.3, p.770 (2012).
[51]. Tracey M. Clarke and James R. Durrant, “Charge Photogeneration in Organic Solar Cells,” Chemical Reviews, vol.110, p.6736 (2010).
[52]. Yen-Ju Cheng, Sheng-Hsiung Yang, and Chain-Shu Hsu, “Synthesis of Conjugated Polymers for Organic Solar Cell Applications,” Chemical Reviews, vol.109, p.5868 (2009).
[53]. Serap Günes, Helmut Neugebauer, and Niyazi Serdar Sariciftci, “Conjugated Polymer-Based Organic Solar Cells,” Chemical Reviews, vol.107, p.1324 (2007).
[54]. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate Measurement and Characterization of Organic Solar Cells,” Advanced Functional Materials, vol.16, p.2016 (2006).
[55]. Harald Hoppe and Niyazi Serdar Sariciftci, “Organic solar cells: An overview,” Journal of Materials Research, vol.19, p.1924 (2004).
[56]. Wen-Feng Lai, Yu-Chih Chiang, Jiun-How Yueh, Tz-Feng Lin, Jih-Hsin Liu, Ying-Nan Lai, Wen-Hsuan Lai, Wei-Chou Hsu, and Chia-Yi Huang, “Effect of Platinum Ribbons on Photoelectric Efficiencies of Dye-Sensitized Solar Cells,” Coatings, vol.13, p.705 (2023).
[57]. Anupam Agrawal, Shahbaz A. Siddiqui, Amit Soni, and Ganesh D. Sharma, “Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell,” Solar Energy, vol.233, p.378 (2022).
[58]. Prasanth K. Enaganti, Suraj Soman, Sabu S. Devan, Sourava Chandra Pradhan, Alok Kumar Srivastava, Joshua M. Pearce, and Sanket Goel, “Dye-sensitized solar cells as promising candidates for underwater photovoltaic applications,” Progress in Photovoltaics, vol.30, p.632 (2022).
[59]. Wen-Feng Lai, Pei-Ling Chao, Xin-Yu Lin, Yin-Pei Chen, Jih-Hsin Liu, Tz-Feng Lin, Wei-Chou Hsu, and Chia-Yi Huang, “Characteristics of Dye-Sensitized Solar Cells with TiO2 Stripes,” Materials, vol.15, p.4212 (2022).
[60]. Shanmuganathan Venkatesan, Dornauli Manurung, Hsisheng Teng, and Yuh-Lang Lee, “Efficiency and stability improvements for room light dye-sensitized solar cells in the presence of electrochemically fabricated composite counter electrodes,” Journal of Power Sources, vol.518, p.230781 (2022).
[61]. Agata Zdyb and Ewelina Krawczak, “Organic Dyes in Dye-Sensitized Solar Cells Featuring Back Reflector,” Materials, vol.14, p.5529 (2021).
[62]. Gyo Hun Choi, Dong Jun Kim, Juyoung Moon, Jong Hak Kim, and Jung Tae Park, “High-order diffraction grating as light harvesters for solar energy conversion,” Journal of Electroanalytical Chemistry, vol.873, p.114490 (2020).
[63]. Sasipriya Kathirvel, Pedaballi Sireesha, Chaochin Su, Bo-Ren Chen, and Wen-Ren Li, “Morphological control of TiO2 nanocrystals by solvothermal synthesis for dye-sensitized solar cell applications,” Applied Surface Science, vol.519, p.146082 (2020).
[64]. Sameh O. Abdellatif, Sabine Josten, Ahmed S. G. Khalil, Daniel Erni, and Frank Marlow, “Transparency and Diffused Light Efficiency of Dye-Sensitized Solar Cells: Tuning and a New Figure of Merit,” IEEE Journal of Photovoltaics, vol.10, p.522 (2020).
[65]. Jihuai Wu, Zhang Lan, Jianming Lin, Miaoliang Huang, Yunfang Huang, Leqing Fan, Genggeng Luo, Yu Lin, Yimin Xie, and Yuelin Wei, “Counter electrodes in dye-sensitized solar cells,” Chemical Society Reviews, vol.46, p.5975 (2017).
[66]. Merve Özkan, Syed Ghufran Hashmi, Janne Halme, Alp Karakoç, Teemu Sarikka, Jouni Paltakari, and Peter D. Lund, “Inkjet-printed platinum counter electrodes for dye-sensitized solar cells,” Organic Electronics, vol.44, p.159 (2017).
[67]. Jun Hyuk Yang, Chung Wung Bark, Kyung Hwan Kim, and Hyung Wook Choi, “Characteristics of the Dye-Sensitized Solar Cells Using TiO2 Nanotubes Treated with TiCl4,” Materials, vol.7, p.3522 (2014).
[68]. Q.Q. Liu, D.W. Zhang, J. Shen, Z.Q. Li, J.H. Shi, Y.W. Chen, Z. Sun, Z. Yang, and S.M. Huang, “Effects of RF and pulsed DC sputtered TiO2 compact layer on the performance dye-sensitized solar cells,” Surface and Coatings Technology, vol.231, p.126 (2013).
[69]. Jiawei Gong, Jing Liang, and K. Sumathy, “Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials,” Renewable and Sustainable Energy Reviews, vol.16, p.5848 (2012).
[70]. Seung Hwan Ko, Daeho Lee, Hyun Wook Kang, Koo Hyun Nam, Joon Yeob Yeo, Suk Joon Hong, Costas P. Grigoropoulos, and Hyung Jin Sung, “Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell,” Nano Letters, vol.11, p.666 (2011).
[71]. Akira Baba, Keisuke Wakatsuki, Kazunari Shinbo, Keizo Kato, and Futao Kaneko, “Increased short-circuit current in grating-coupled surface plasmon resonance field-enhanced dye-sensitized solar cells,” Journal of Materials Chemistry, vol.21, p.16436 (2011).
[72]. Hua Yu, Shanqing Zhang, Huijun Zhao, Bofei Xue, Porun Liu, and Geoffrey Will, “High-Performance TiO2 Photoanode with an Efficient Electron Transport Network for Dye-Sensitized Solar Cells,” The Journal of Physical Chemistry C, vol.113, p.16277 (2009).
[73]. Byoung-Kuk Lee and Jang-Joo Kim, “Enhanced efficiency of dye-sensitized solar cells by UV–O3 treatment of TiO2 layer,” Current Applied Physics, vol.9, p.404 (2009).
[74]. Chao-Po Hsu, Kun-Mu Lee, Joseph Tai-Wei Huang, Chia-Yu Lin, Chia-Hua Lee, Lih-Ping Wang, Song-Yeu Tsai, and Kuo-Chuan Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,” Electrochimica Acta, vol.53, p.7514 (2008).
[75]. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, and Y. E. Sung, “Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency,” Advanced Materials, vol.20, p.54 (2008).
[76]. K. Asagoe, Y. Suzuki, S. Ngamsinlapasathian and S. Yoshikawa, “TiO2-Anatase Nanowire Dispersed Composite Electrode for Dye-Sensitized Solar Cells,” Journal of Physics: Conference Series, vol.61, p.1112 (2007).
[77]. Neil Robertson, “Optimizing Dyes for Dye-Sensitized Solar Cells,” Angewandte Chemie, vol.45, p.2338 (2006).
[78]. Bin Li, Liduo Wang, Bonan Kang, Peng Wang, and Yong Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, vol.90, p.549 (2006).
[79]. Sorapong Pavasupree, Supachai Ngamsinlapasathian, Masafumi Nakajima, Yoshikazu Suzuki, and Susumu Yoshikawa, “Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure,” Journal of Photochemistry and Photobiology A: Chemistry, vol.184, p.163 (2006).
[80]. Michael Dürr, Andreas Schmid, Markus Obermaier, Silvia Rosselli, Akio Yasuda, and Gabriele Nelles, “Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers,” Nature Materials, vol.4, p.607 (2005).
[81]. Xiaoming Fang, Tingli Ma, Guoqing Guan, Morito Akiyama, and Eiichi Abe, “Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness,” Journal of Photochemistry and Photobiology A: Chemistry, vol.164, p.179 (2004).
[82]. Erkan Aydin, Cesur Altinkaya, Yury Smirnov, Muhammad A. Yaqin, Kassio P.S. Zanoni, Abhyuday Paliwal, Yuliar Firdaus, Thomas G. Allen, Thomas D. Anthopoulos, Henk J. Bolink, Monica Morales-Masis, and Stefaan De Wolf, “Sputtered transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies,” Matter, vol.4, p.3549 (2021).
[83]. Jia Li, Hao Wang, Xin Yu Chin, Herlina Arianita Dewi, Kurt Vergeer, Teck Wee Goh, Jia Wei Melvin Lim, Jia Haur Lew, Kian Ping Loh, Cesare Soci, Tze Chien Sum, Henk J. Bolink, Nripan Mathews, Subodh Mhaisalkar, and Annalisa Bruno, “Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules,” Joule, vol.4, p.1035 (2020).
[84]. Jingting Luo, Wei Xiong, Guangxing Liang, Yike Liu, Haozhi Yang, Zhuanghao Zheng, Xianghua Zhang, Ping Fan, and Shuo Chen, “Fabrication of Sb2S3 thin films by magnetron sputtering and post-sulfurization/selenization for substrate structured solar cells,” Journal of Alloys and Compounds, vol.826, p.154235 (2020).
[85]. J T Gudmundsson, “Physics and technology of magnetron sputtering discharges,” Plasma Sources Science and Technology, vol.29, p.113001 (2020).
[86]. Shuo Yuan, Naiming Lin, Qunfeng Zeng, Hongxia Zhang, Xiaoping Liu, Zhihua Wang, and Yucheng Wu, “Recent developments in research of double glow plasma surface alloying technology: a brief review,” Journal of Materials Research and Technology, vol.9, p.6859 (2020).
[87]. M. F. Al-Kuhaili, “Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma,” Journal of Materials Science: Materials in Electronics, vol.31, p.2729 (2020).
[88]. Ibnul Farid, Abhijit Boruah, Joyanti Chutia, Arup Ratan Pal, and Heremba Bailung, “Low loaded platinum (Pt) based binary catalyst electrode for PEMFC by plasma co-sputtered deposition method,” Materials Chemistry and Physics, vol.236, p.121796 (2019).
[89]. Xuejie Zhu, Dong Yang, Ruixia Yang, Bin Yang, Zhou Yang, Xiaodong Ren, Jian Zhang, Jinzhi Niu, Jiangshan Feng, and Shengzhong (Frank) Liu, “Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation,” Nanoscale, vol.9, p.12316 (2017).
[90]. Hwan-Jin Jeon, Ju Young Kim, Woo-Bin Jung, Hyeon-Su Jeong, Yun Ho Kim, Dong Ok Shin, Seong-Jun Jeong, Jonghwa Shin, Sang Ouk Kim, and Hee-Tae Jung, “Advanced Materials, vol.28, p.8439 (2016).
[91]. Yun Seog Lee, Talia Gershon, Oki Gunawan, Teodor K. Todorov, Tayfun Gokmen, Yudistira Virgus, and Supratik Guha, “Cu2ZnSnSe4 Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length,” Advanced Energy Materials, vol.5, p.1401372 (2015).
[92]. Xinsheng Liu, Jie Chen, Miao Luo, Meiying Leng, Zhe Xia, Ying Zhou, Sikai Qin, Ding-Jiang Xue, Lu Lv, Han Huang, Dongmei Niu, and Jiang Tang, “Thermal Evaporation and Characterization of Sb2Se3 Thin Film for Substrate Sb2Se3/CdS Solar Cells,” ACS Applied Materials & Interfaces, vol.6, p.10687 (2014).
[93]. Tara P. Dhakal, Chien–Yi Peng, R. Reid Tobias, Ramesh Dasharathy, and Charles R. Westgate, “Characterization of a CZTS thin film solar cell grown by sputtering method,” Solar Energy, vol.100, p.23 (2014).
[94]. S. Fernández and F.B. Naranjo, “Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications,” Solar Energy Materials and Solar Cells, vol.94, p.157 (2010).
[95]. Sunghun Jung, SeJin Ahn, Jae Ho Yun, Jihye Gwak, Donghwan Kim, and Kyunghoon Yoon, “Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique,” Current Applied Physics, vol.10, p.990 (2010).
[96]. G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, and L. M. Peter, “Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors,” Progress in Photovoltaics, vol.17, p.315 (2009).
[97]. M. Berginski, J. Hüpkes, W. Reetz, B. Rech, and M. Wuttig, “Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application,” Thin Solid Films, vol.516, p.5836 (2008).
[98]. Sujuan Wu, Hongwei Han, Qidong Tai, Jing Zhang, Sheng Xu, Conghua Zhou, Ying Yang, Hao Hu, BoLei Chen, Bobby Sebo, and Xing-Zhong Zhao, “Enhancement in dye-sensitized solar cells based on MgO-coated TiO2 electrodes by reactive DC magnetron sputtering,” Nanotechnology, vol.19, p.215704 (2008).
[99]. G. Khrypunov, A. Romeo, F. Kurdesau, D.L. Bätzner, H. Zogg, and A.N. Tiwari, “Recent developments in evaporated CdTe solar cells,” Solar Energy Materials and Solar Cells, vol.90, p.664 (2006).
[100]. Dengyuan Song, Armin G. Aberle, and James Xia, “Optimisation of ZnO:Al films by change of sputter gas pressure for solar cell application,” Applied Surface Science, vol.195, p.291 (2002).
[101]. Ryan O’Hayre, Sang-Joon Lee, Suk-Won Cha, and Fritz.B Prinz, “A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading,” Journal of Power Sources, vol.109, p.483 (2002).
[102]. Vladimir Kouznetsov, Karol Macák, Jochen M. Schneider, Ulf Helmersson, and Ivan Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities,” Surface and Coatings Technology, vol.122, p.290 (1999).
[103]. https://www.nrel.gov/pv/cell-efficiency.html
[104]. 林明獻,太陽電池技術入門,全華圖書股份有限公司,111年。
[105]. 施敏、梅凱瑞,半導體製程概論(增訂版),國立交通大學出版社,105年。
[106]. 蕭宏,半導體製程技術導論,全華圖書股份有限公司,103年。
[107]. 施敏/李明逵(著)、曾俊元(譯),半導體元件物理與製作技術(第三版),國立交通大學出版社,102年。
[108]. 黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳,太陽電池Solar Cells,五南圖書出版股份有限公司,97年。