簡易檢索 / 詳目顯示

研究生: 賴昭諭
Lai, Chao-Yu
論文名稱: 以數值模擬分析設計微波腔體及其應用於塑膠加工製程之研究
Application of microwave processing in plastic materials and its optimizing strategy by using numerical simulation
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 微波設備HFSSIcepak微波模擬微波加熱微波熱壓製程改善
外文關鍵詞: Microwave equipment, microwave simulation, microwave heating, HFSS-Icepak, process improvement
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將具有高加熱效率的微波導入塑料鞋材加工製程以縮短製程時間。實驗結果顯示以圓心兩步法之製程只需加熱140秒,比傳統製程的13分鐘以上,大幅縮短了55倍以上的加工時間,且此製程各處貼合效果都能超過商業剝離強度2kgf/cm的標準,整片試片剝離強度最低值仍有2.07 kgf/cm,成功地將微波應用在改善全回收貼合鞋材。另一方面,本研究也將微波貼合製程運用HFSS-Icepak建構出微波加熱模型,成功模擬出試片於腔體內旋轉加熱後的溫度分布,並以實驗驗證其溫度誤差僅在10%附近。在碳纖維複合材料的微波加工方面,將熱塑性的聚丙烯與碳纖維複合材料置於40 mm空心公模並放入發泡板後,以兩金屬轉盤間距為56 mm、不鏽鋼檔板距離在50 mm或是100 mm的控制條件下,都能讓微波均勻在100 mm×100 mm的面積上進行加熱程序,靜止樣品高溫區模擬與實際量測的誤差僅6.8%。最後,本研究也進行腔體調整來設計出最佳的腔體加工設備。實驗結果顯示,將微波腔體上方原為不鏽鋼轉盤改成聚丙烯材質,不鏽鋼檔板直接放在不鏽鋼保護套上方,能讓電場均勻分布至整個試片。重新設計過後的機台,可應用到環氧樹脂與玻璃纖維複合材料、聚碳酸酯與碳纖維複合材料以及橡膠產業上,達到加工時間短、能源運用效率提高及降低成本的效果。此系統也有相當潛力能被應用在更多的加工製程。

    In this study, high heating efficiency microwaves were introduced into the plastic shoe material processing process to shorten the processing time. The experimental results show that the two-step process only needs to be heated for 140 seconds, which shortens the processing time by more than 55 times compared with the traditional process, and the test piece can exceed the commercial standard peel strength of 2kgf/cm. Using HFSS-Icepak to construct a model to simulate the temperature distribution of the test piece after rotating and heating in the cavity, the error is only about 10%. In the microwave processing of carbon fiber composite materials, after PP-CF is placed in a mold with a 40 mm hollow male and an EVA foaming plate, the distance between the two metal turntables is 56 mm, and the distance between the stainless steel baffle plates is 50 mm or 100 mm. The microwave heating program is performed uniformly on an area of 100 mm×100 mm, and the simulation error of the static sample high-temperature zone is only 6.8%. Finally, the best cavity processing equipment was designed, the stainless steel turntable in the microwave cavity was changed to polypropylene, and the stainless steel baffle was placed directly above the stainless steel protective cover so that the electric field could be evenly distributed across the Epoxy-CF. The redesigned machine can also be applied to epoxy resin and glass fiber composite materials, polycarbonate and carbon fiber composite materials, and the rubber industry.

    摘要 I 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 符號表 XVII 第一章、 緒論 1 第二章、 文獻回顧 2 2.1. 電磁波理論 2 2.2. 微波介紹 6 2.3. 微波的應用 10 2.3.1. 微波應用於化學合成 10 2.3.2. 微波應用於材料製程 11 2.3.3. 微波應用於環境工程 14 2.4. 數值模擬介紹 16 2.4.1. 有限差分方法(FDTD) 17 2.4.2. 頻域的有限元法(Finite Element Method, FEM) 18 2.4.3. 電磁模擬軟體HFSS簡介 20 2.4.4. 熱場模擬軟體ANSYS® Icepak簡介 22 2.5. 研究目的 25 第三章、 研究方法 26 3.1. 研究藥品 26 3.2. 研究使用之機台儀器 27 3.3. 微波加工系統介紹 28 3.3.1. 微波熱壓機台 28 3.4. 材料介電性質量測 29 3.5. 模擬與研究方法 30 3.5.1. HFSS模擬方法 30 3.5.2. Icepak熱傳模擬方法 33 3.5.3. 微波運用加工製程實驗 36 第四章、 結果與討論 43 4.1. 鞋材貼合實驗 43 4.1.1. 膠膜性能測試 43 4.1.2. 微波熱壓機貼合 49 4.1.3. HFSS-Icepak微波熱壓腔體的模擬 62 4.2. 碳纖維複合材料實驗 71 4.2.1. 微波熱壓機台用於加熱碳纖維複合材料的實驗結果 71 4.2.2. 建構環氧樹脂與碳纖維複合材料HFSS-Icepak的模擬模型 81 4.3. 以HFSS-Icepak模擬於微波熱壓機台調整 84 4.3.1. HFSS-Icepak微波熱壓腔體調整—負載為碳纖維複合材料 84 4.3.2. 機台改造後HFSS-Icepak負載為碳纖維複合材料的模擬結果 94 4.3.3. 微波熱壓機台應用 97 第五章、 結論 99 參考文獻 101

    [1].D.M. Pozar, Microwave engineering. 2009.
    [2].U. Chandra V. Saxena, Microwave synthesis: a physical concept. Microwave Heating. 2011.
    [3].Aditya Kadian, et al., Improved dielectric constant of thermoplastic blend as a function of alumina loading. Measurement, 90: p. 461-467. 2016.
    [4].Jing Sun, Wenlong Wang, and Qinyan Yue, Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials (Basel, Switzerland), 9(4): p. 231. 2016.
    [5].C. Oliver Kappe and Doris Dallinger, The impact of microwave synthesis on drug discovery. Nature Reviews Drug Discovery, 5(1): p. 51-63. 2006.
    [6].M. Sato, et al., Experimental Analysis for Thermally Non-Equilibrium State Under Microwave Irradiations: A Greener Process for Steel Making. 2006.
    [7].S. M. Bawin, A. Sheppard, and W. R. Adey, 203 - Possible Mechanisms of Weak Electromagnetic Field Coupling in Brain Tissue. Bioelectrochemistry and Bioenergetics, 5(1): p. 67-76. 1978.
    [8].W. R. Lawrence Af Fau - Adey and W. R. Adey, Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields. (0161-6412 (Print)).
    [9].Georges Roussy, et al., Temperature runaway of microwave heated materials: Study and Control. Journal of Microwave Power, 20(1): p. 47-51. 1985.
    [10].Xunli Zhang, David O. Hayward, and D. Michael P. Mingos, Microwave Dielectric Heating Behavior of Supported MoS2 and Pt Catalysts. Industrial & Engineering Chemistry Research, 40(13): p. 2810-2817. 2001.
    [11].Antonio de la Hoz, Ángel Díaz-Ortiz, and Andrés Moreno, Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews, 34(2): p. 164-178. 2005.
    [12].Michael R. Rosana, et al., On the rational design of microwave-actuated organic reactions. Chemical Science, 3(4): p. 1240-1244. 2012.
    [13].Giuseppe La Regina, et al., Open Vessel and Cooling while Heating Microwave-Assisted Synthesis of Pyridinyl N-Aryl Hydrazones. ACS Combinatorial Science, 13(1): p. 2-6. 2011.
    [14].F. Y. C. Boey, B. H. Yap, and L. Chia, Microwave curing of epoxy-amine system — effect of curing agent on the rate enhancement. Polymer Testing, 18(2): p. 93-109. 1999.
    [15].Yu Zheng, et al., Effect of microwave-assisted curing on bamboo glue strength: Bonded by thermosetting phenolic resin. Construction and Building Materials, 68: p. 320-325. 2014.
    [16].Xuehong Xu, et al., Improvement of the Compressive Strength of Carbon Fiber/Epoxy Composites via Microwave Curing. Journal of Materials Science & Technology, 32(3): p. 226-232. 2016.
    [17].Teh-Long Lai, et al., Microwave-enhanced catalytic degradation of phenol over nickel oxide. Applied Catalysis B: Environmental, 68(3): p. 147-153. 2006.
    [18].Li Lin, et al., Removal of ammonia nitrogen in wastewater by microwave radiation. Journal of Hazardous Materials, 161(2): p. 1063-1068. 2009.
    [19].Vidyadhar V. Gedam and Iyyaswami Regupathi, Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation. Natural Resources Research, 21(1): p. 75-82. 2012.
    [20].Karima Aoudia, et al., Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Management, 60: p. 471-481. 2017.
    [21].Yu-Fong Huang, et al., Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy, 84: p. 75-82. 2015.
    [22].Qunhui Lin, Guanyi Chen, and Yongkai Liu, Scale-up of microwave heating process for the production of bio-oil from sewage sludge. Journal of Analytical and Applied Pyrolysis, 94: p. 114-119. 2012.
    [23].J. A. Menéndez, M. Inguanzo, and J. J. Pis, Microwave-induced pyrolysis of sewage sludge. Water Research, 36(13): p. 3261-3264. 2002.
    [24].Rahul Chhibber Dharmendra Singh Rajpurohit, Design Optimization of Two Input Multimode Applicator for Efficient Microwave Heating. INTERNATIONAL JOURNAL OF ADVANCES IN MICROWAVE TECHNOLOGY, 1(3): p. 68-73. 2016.
    [25].M. F. Iskander, et al., FDTD simulation of microwave sintering of ceramics in multimode cavities. IEEE Transactions on Microwave Theory and Techniques, 42(5): p. 793-800. 1994.
    [26].黃彥均, 選對電磁模擬演算法高頻電子系統驗證加速. 新通訊元件雜誌.
    [27].Yee Kane, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3): p. 302-307. 1966.
    [28].ANSYS, Reliability and Automatic Adaptive Meshing. p. 2. 2020.
    [29].ANSYS, HFSS Transient Solver Option. 2020.
    [30].ANSYS, ANSYS Icepak. 2020.
    [31].Tsun-Hsu Chang, et al., Permeability measurement and control for epoxy composites. Applied Physics Letters, 111(9): p. 094102. 2017.
    [32].Industrial Development Bureau, CNS15761-1. 2014.
    [33].Industrial Development Bureau. Footwear. 2016; Available from: https://www.mittw.org.tw/regulations/regulations3-more.aspx?aLyL8OKSVuI%3D.
    [34].H. B. Al-Wakeel, Z. A. Abdul Karim, and H. H. Al-Kayiem, A Technique for Localized Rapid Soot Oxidation Using Metal Aided Microwave Radiation. IEEE Transactions on Microwave Theory and Techniques, 64(1): p. 37-43. 2016.
    [35].Woo Chin and D. Lee, Laminating rule for predicting the dielectric properties of E-glass/epoxy laminate composite. Composite Structures, 77: p. 373-382. 2007.
    [36].Kwan-Woo Kim, et al., Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method. Journal of Environmental Management, 203: p. 872-879. 2017.
    [37].Myung Jang, et al., Effects of carbon fiber modification with multiwall CNT on the electrical conductivity and EMI shielding effectiveness of polycarbonate/carbon fiber/CNT composites. Journal of Applied Polymer Science, 136. 2018.
    [38].Anastasia Zabaniotou and George Stavropoulos, Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis, 70: p. 711-722. 2003.

    無法下載圖示 校內:2025-07-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE