| 研究生: |
翁傑軒 Weng, Chieh-Hsuan |
|---|---|
| 論文名稱: |
大規模崩塌水質特徵之關聯性研究 Study on Correlation of Water Quality and Large Scale Landslide |
| 指導教授: |
謝正倫
Shieh, Chjeng-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 自然災害減災及管理國際碩士學位學程 International Master Program on Natural Hazards Mitigation and Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 大規模崩塌 、水質 、電導度 |
| 外文關鍵詞: | Large scale landslide, Water quality, Electricity conductivity |
| 相關次數: | 點閱:138 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位處於歐亞大陸板塊與菲律賓海板塊交界處,屬環太平洋火山地震帶上,板塊擠壓碰撞頻繁、地殼變動與造山運動發達,導致台灣地質較為破碎。近年來由於氣候變遷,以2009年莫拉克颱風,導致小林村滅村事件,致使大規模災害成為土砂災害防災主題之一。由於大規模崩塌發生的驅動條件之一為地下水,然而水質可以做為地下水多寡的判斷條件,所以本研究欲建立水質與崩塌的關聯性。
本研究依據地調所提供之大規模崩塌潛勢區作為採水樣的標準,共採取了415瓶,分別於曾文溪流域採101瓶、高屏溪流域採210瓶,林邊溪流域採52瓶及台東沿海採52瓶。本研究水樣品分析使用離子色譜法,來測定水樣品中的離子,水樣品中的電導度值即使用電導度儀量測,水樣品的篩選透過所測定出來的離子使用Piper水質菱形圖,剔除受到人為活動影響或受到海水鹽化影響之水樣品,共計6瓶。 從時間差異,可以發現乾季的電導度值永遠大於濕季的電導度值,其導電度值相差約為300μS/m,主要為是否受到降雨影響;從空間差異,可以發現四大流域中,電導度值最高的為高屏溪流域、林邊溪流域、曾文溪流域及台東沿海地區,然而單就高屏溪流域內,其美瓏溪流域與濁口溪流域的電導度值相差200μS/m;從崩塌率與導電度的關係,崩塌率為子集水區面積除以大規模崩塌潛勢區的面積,並以子集水區下游的量測點代表該子集水區之電導度值,可以發現透過指數可以回歸出一條R2=0.59的回歸線,所以崩塌率越高的子集水區,所測得之電導度值也越高;從溪流調查與導電度的關係可以發現,溪流的導電度值受到崩塌地湧水影響,當溪流越靠近崩塌地湧水其電導度值也越高,當溪流遠離崩塌地湧水其電導度值會降低;從土壤試驗,可以發現電導度值與岩層的風化有關,風化時間較短之岩層,浸泡時間越長越可以反應其電導度值。根據以上特性,可以掌握崩塌地與電導度之關係,並希望透過本研究建立大規模崩塌之預警基準,並有助相關災害應變時間之爭取。
Taiwan is located on the Pacific Rim Seismic Belt, hence the earthquake, typhoon and heavy rainfall are common and frequent phenomenon, and both of all leading to poor geological condition in Taiwan. In recent, due to global climate change, such as Xiaolin village was buried by landslide in typhoon Morakot in 2009, leading to the large scale landslide is the most important topic in disaster prevention. Groundwater is the key factors to drive the large scale landslide, so water quality can judge the volume of groundwater, in this study wants to build the relationship between large scale landslide and water quality.
In this study, select the water sample points by large scale potential landslide provided by Central Geological Survey, totally collecting 415 water samples, including Tsengwen watershed taken 101 samples, Kaoping watershed taken 210 samples, Linbian watershed taken 52 samples and coastal areas in Taitung taken 52 samples. The concentration of inorganic ions are detected by ion chromatography and using electricity conductivity meter to detect the electricity conductivity in water samples. Also using piper diagram to remove the water samples affected by human activities and saltation by sea water, in the water samples, there are 6 bottles in two zones. From time difference, the electricity conductivity of dry season is larger than wet season, the electricity conductivity value is about 300μS/m, because the electricity conductivity is affected by rainfall. From spatial difference, in four study zones, the Kaoping watershed has highest value and coastal area in Taitung has lowest value. In Kaoping watershed, the difference electricity conductivity value is about 200μS/m between Meilong River and Zhuko River. From the relationship between landslide rate and electricity conductivity, the potential landslide rate is calculated by sub-watershed area divides into large scale potential landslide area, using the measurement points at downstream of the sub-watershed to represent the sub-watershed. It can regress an exponential line, which R2=0.59. If the landslide rate is high, the electricity conductivity will be high. From analysis of electricity conductivity of stream, the electricity conductivity of stream is affected by inrush water from the potential landslide. When the measurement points close to the inrush water, the electricity conductivity will raise, on the contrary, when the measurement points away from the inrush water, the electricity conductivity will decrease. From the soil experiment, there is relationship between electricity conductivity and bedrock weathering, the bedrock which weathering time is short, the electricity conductivity will increase through the soaked time is long. Above all, it can handle the relationship between landslide and electricity conductivity, and hope to stablish the warning system of the large scale landslide, to fight for more time to response the large scale landslide.
1. 林昱汶,「地下水水質與邊坡崩塌及崩落型土石流發生之關係-以南投地區為例」,國立台灣大學生物環境系統工程學研究所碩士論文,2006。
2. 楊展源,「地下水離子濃度、電導度與土石流發生關係之研究」,國立台灣大學生物環境系統工程學研究所碩士論文,2004。
3. 林芷薇,「使用自然電位觀測與FLAC3D模式分析實驗室砂箱尺度邊坡破壞歷程」,國立中央大學應用地質研究所碩士論文,2016。
4. 陳冠樺,「林邊溪流域河川化學性質、輸砂量與山崩之關係」,國立台灣大學理學院地質科學研究所碩士論文,2014。
5. 范正成,「雨量與地下水電導度(EC)監測方法之研究(二)」,行政院國家科學委員會,2003。
6. 吳天佑,「氣候變遷下降雨型態變異對集水區崩塌潛勢及水質之影響」,逢甲大學水利工程與資源保育學系碩士班碩士論文,2014。
7. 范正成、楊智翔、張世駿、黃效禹、郭嘉峻,「氣候變遷對高屏溪流域崩塌潛勢之影響評估」,中華水土保持學報,44(4) pp 335-350,2013。
8. 李鎮鍵、林昂、蔡元融,「莫拉克颱風引發土砂問題之研究-以曾文水庫集區為例」,中華防災學刊 ,2(1) pp 51-58,2010。
9. 地頭薗 隆,「渓流水の電気伝導度を用いた深層崩壊発生場の予測-地頭薗」,砂防学会誌,Vol.66, No.6 p.56-59,2014。
10. 地頭薗 隆、寺本 行芳、和田 大祐、田淵 陽介、中島 希,「深層崩壊の予測と地域防災力向上」,「南九州から南西諸島における総合的防災研究の推進と地域防災体制の構築」報告書,2013。
11. 地頭薗 隆、下川 悦郎、迫 正敏、寺本 行芳,「鹿児島県出水市針原川流域の水文地形的特性と深層崩壊」,砂防学会誌,Vol.56, No.5 p.15-26,2004。
12. 地頭薗 隆、下川 悦郎、寺本 行芳,「深層崩壊発生場予測法の提案-鹿児島県出水市矢筈岳山体を例にして」,砂防学会誌,Vol.59, No.2 p.5-12,2006。
13. 孫偉騰,「滲流水之離子濃度及電導度與土體崩塌發生關係之研究」,國立台灣大學生物環境系統工程學研究所碩士論文,2005。
14. 宋聖榮,「地質震害報告調查報告,921集集大地震」,國家地震研究中心,2002。
15. 青木 滋,「地エトベ地ソ地質,地下水調查」,層滑動之規劃與整治工法研討會論文集,1998。
16. 陳榮河,「土石流之發生機制,地工技術」,74,21-28,1999。
17. 陳子揚,「以不同水質參數研析台灣山區地下水與地質間之關係」,國立宜蘭大學環境工程學系碩士班,2012。
18. 江漢全,「蘭陽平原地下水之主要化學成分」,中國農業工程學報,第四十卷,第四期,85-95頁,1994。
19. 廖仲威,「台灣中斷山區地下水水質特性與地質間之關係研析」,國立宜蘭大學環境工程學系碩士班,2014。
20. 陳振宇、藤田正治、堤大三,「基岩位置及土層特性對降雨逕流與大規模崩塌之影響」,中華水土保持學報,45(4): 243-256,2014。
21. 江草 智弘,「Survey of Stream Water Chemistry in a Region at Risk of Deep-seated Landslides in Taiwan」,2016大規模崩塌災害防治技術交流國際研討會,2016。
22. 堀田 紀文,「岩盤風化に伴う渓流水質の変化に着目した深層崩壊の発生時期予測手法の開発」,2015。
23. 地頭薗隆、下川悦郎、寺本行芳,「針原川流域の水文地形的特性と深層崩壊」,土砂災害論文集,2004。
24. 李三畏,「崩坍地與土石流災害防治技術對策」,台北都會區地質災害研討會論文集,中央地質調查所,2001。
25. 王文能,「崩塌的地質特性與防災」,中華防災學會,Vol.4,73-76,2016。
26. 木下篤彦、 北川眞一、内田太郎、海原荘一、竹本大昭、只熊典子,「深層崩壊が集中的に発生する降雨条件―平成23年台風12号の降雨分析」,砂防学会誌,Vol.66, No.3 p.24-31,2013。
27. Anderson S. P., Dietrich W. E., Montgomery D. R., Torres R., Conrad M. E. and Loague K. ,“Subsurface flow paths in a steep, unchanneled catchment”, Water Resources Research, 33, 2637-2653, 1997.
28. Berner E. K. and Berner R. A., “Global Environment: Water, Air, and Geochemical Cycles”, Prentice Hall, New Jersey, 1996.
29. Schopka H. H., Derry L. A. and Arcilla C. A. ,“Chemical weathering, river geochemistry and atmospheric carbon fluxes from volcanic and ultramafic regions on Luzon Island, the Philippines.”, Geochimica et Cosmochimica Acta, 75, 978-1002, 2011.
30. Ibe, K. M. Sr. and A. M. Ebe, “Impacts of debris-flow deposits on hydrogeochemical processes and the development of dryland salinity in the cross-river catchment, SE, Nigeria.” Environmental Monitoring and Assessment, Vol. 64, pp. 449~456, 2000.
31. Takahashi, T., “Debris Flow.” International Association for Hydraulic Research, Published by A. Balkema, Rotterdam and Brookfield. U.S.A, pp. 63-75, 1991.
32. Ietro Aleotti, “A Warning System for Rainfall-Induced Shallow Failures”, Engineering Geology, Vol. 73, pp 247-265, 2004.
33. Chigira M., “Geologic factors contributing to landslide generation in a pyroclastic area: August 1998 Nishigo Village, Japan.” Geomorphology, 46, 117-128, 2002.
34. Tomohiro Egusa, Nobuhito Ohte, Tomoki Oda and Masakazu Suzuki, “Relationship between catchment scale and the spatial variability of stream discharge and chemistry in a catchment with multiple geologies”, Hydrological Research Letters 7(2), 12–17, 2013.
35. Fan, J.C., Liu, C.H., Yang C. H. and Huang, H. Y. , “A laboratory study on groundwater quality and mass movement occurrence”, Environ Geol, 57, 1509-1519, 2009.