| 研究生: |
何彥廷 Ho, Yen-Ting |
|---|---|
| 論文名稱: |
阿公店水庫排砂操作策略探討 Study on Operation Strategy of Sediment Desilting for Agongdian Reservoir |
| 指導教授: |
王筱雯
Wang, Hsiao-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 阿公店水庫 、空庫防淤 、SRH1D 、概念模式 |
| 外文關鍵詞: | Agongdian Reservoir, Empty Flushing, SRH1D, Conceptual Model |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿公店水庫在1953年啟用以來,由於長期淤積,至1991年時水庫淤積率已超過70%,嚴重影響防洪和供水的功能。因此在1997年~2005年辦理更新改善計畫,更新改善後庫容為1837萬立方公尺,並於每年六月一日到九月一日實施空庫防淤操作排砂,以維持水庫之永續。而因為供水需求與景觀等考量,排砂操作未能完全空庫,其排砂效率尚有提升之空間。因此本研究參考現行的水庫操作規則,設計不同操作方案,並建置阿公店水庫概念模式以模擬阿公店水庫在各操作方案下的排砂量和供水量,希望可以藉由調整操作方案來提升每年水庫的排砂量。另外在分析水庫排砂操作之外,為了確保下游河防安全,本研究利用一維數值模式模擬排砂過後下游河道(溢洪管出口至前洲橋)的斷面地形變化。
本研究使用自民國96年到105年實際水庫運轉紀錄和目前水庫操作規則以建置阿公店水庫概念模式,並進行四種操作情境的模擬,包含調整空庫防淤期的時間、調整空庫防淤時期之最高水位、在防洪運轉時期以不同調節性放水量進行洩降和在防洪運轉時期洪水來臨後以不同水位進行排砂,模擬結果發現若欲在較不影響供水的情形下增加排砂量,可考慮將空庫排淤期之最高水位降至30公尺,並將空庫排淤期提前到五月十日或是五月二十日開始,並在結束時間調整上搭配提早一旬結束空庫防淤操作,或是維持目前結束日期之方案,而在防洪運轉時期可使用90cms之調節性放水量將水庫放至空庫,並在洪水來臨後維持低水位以增加排砂量。由數值模式的分析結果得知,在經過10年排砂後在下游河道平均淤積約0.08公尺,如定期辦理清淤以及完成上游河道斷面的整治,河防應可安全無礙。
Since the Agongdian Reservoir was built in 1953, by the end of 1991, the accumulated rate of the reservoir already exceeded 70% due to continuous sediment inflow. Consequently, the flood capacity and reservoir storage have been severely impacted. In order to abate this problem, from 1997 to 2005 the Water Resource Agency (WRA) in Taiwan oversaw construction to renew the reservoir. After the renewal processes, the storage of the reservoir increased to 18.37 million m^3. The reservoir management plan was also updated, requiring empty flushing to occur from June 1^st to September 〖10〗^th every year to make the reservoir sustainable. However, because of the limitation in operation rules, the actual efficiency of empty flushing is less than the physical model done by WRA showed. To improve the desilting efficiency, this study built a conceptual model to analyze water supply capacity and sediment release of the Agongdian reservoir operated under different types of operation strategies designed according to the operation rules in force. Additionally, this study applied 1D numerical model (SRH1D) in the downstream to inspect river capacity after sediment is released from the reservoir.
In this study, we considered recorded reservoir operation reports from 2007 to 2016 as the input data for the conceptual model. We simulated four different of operation strategies with the model, including adjusting the period of empty flushing, adjusting the maximum operation water level during empty flushing, using different regulation discharge in the flood period, and desilting in different water levels after a flood occurs. The results of the conceptual model indicate that there are feasible operation strategies available which can increase the amount of sediment released, and will not have too large of an impact on water supply. These operation strategies include 1. Lowering the maximum water level to 30m during the empty flushing period, 2. Moving up the starting date of empty flushing to May 〖10〗^thor 〖20〗^th and ending the flushing operation in August 〖31〗^stor September 〖10〗^th, 3. Increasing the regulation discharge to 90 cms during the flood period and maintaining a lower water level when the flood comes. Additionally, the results of the 1D numerical model indicate that there is an average deposition of 0.08m in the downstream when the reservoir operates under the current rules. Therefore, it is recommended that the administration should regularly implement dredging and complete river improvements quickly to ensure that the rivers maintain enough capacity to manage floods after sediment is released to the downstream.
1. Bjornn, T. C., Brusven., M. A., Molnau., M. P., Milligan., J. H., Klamt., R. A., Chacho., E., & Schaye, C. (1977), “Transport of granitic sediment in streams and its effects on insects and fish,” Research Technical Completion Report, Project B-036-IDA, prepared by University of Idaho, Moscow, for Office of Water Research and Technology, U. S. Department of the Interior, Washington, D. C.
2. Brusven, M., & Prather, K. (1974), “Influence of stream sediments on distribution of macrobenthos,” Journal of the Entomological Society of British Columbia, 71, pp. 25-32.
3. George W. Annandale, Gregory L. Morris and Pravin Karki (2016), Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower, The World Bank 1818 H Street NW, Washington, International Bank for Reconstruction and Development,
p. 122
4. Jianchun Victor Huang, Blair Greimann (2013), SRH-1D 3.0 User’s Manual: Sedimentation and River Hydraulics – One Dimension, Version 3.0, Technical Report SRH-2013-11.
5. Kondolf, G. M. et al. (2014), Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents, Earth’s Future, 2, pp. 256–280.
6. Lai, Yong G., Blair Greimann (2011), SRH Model Applications and Progress Report on Bank Erosion and Turbidity Current Models. Technical Report No. SRH-2010-22.
7. Maria Laura Brignoli and Paolo Espa et al. (2017), Sediment transport below a small alpine reservoir desilted by controlled flushing: field assessment and one-dimensional numerical simulation, J Soils Sediments, pp. 2187–2201.
8. Morris, Gregory L. (2014), Modern Water Resources Engineering : Chap.5 Sediment Management and Sustainable Use of Reservoirs (p.279-p.333), Humana Press , New York, U.S.
9. Morris, Gregory L. and Fan, Jiahua. (1998). Reservoir Sedimentation Handbook, McGraw-Hill Book Co., New York.
10. Sean Kimbrel and Blair Greimann (2015), Numerical Modeling and Analysis of Sediment Transport at Paonia Reservoir: SRH-1D Model Calibration and 2015 Operations, Report SRH-2015-32.
11. Sumi, T., S. Nakamura, and K. Hayashi (2009), The effect of sediment flushing and environmental mitigation measures in the Kurobe River, in 23rd ICOLD Congress, Q89-R6, Brasilia, Brazil.
12. White, W. R. (2001), Evacuation of Sediment from Reservoirs, Thomas Telford, London, U. K.
13. Wohl, E.E. & Cenderelli, D.A. (2000), “Sediment Deposition and Transport Patterns Following a Reservoir Sediment Release,” Water Resources Research, Vol. 36, No. 1, pp. 319-333.
14. 台灣省水利局(1975),阿公店溪治理規劃報告。
15. 地理資訊倉儲中心:http://gic.wra.gov.tw/gic/HomePage/Index.aspx
16. 艾奕康工程顧問股份有限公司(2012),阿公店溪治理規劃檢討-治理規劃報告,經濟部水利署第六河川局。
17. 洪崇恩(2015),水庫排砂對下游河相變遷之探討,國立成功大學土水利及海洋工程學系碩士論文。
18. 財團法人成大水力海洋研究發展文教基金會(2010),阿公店水庫防淤泥砂觀測及成效評估,經濟部水利署南區水資源局。
19. 財團法人成大水力海洋研究發展文教基金會(2011),阿公店水庫防淤泥砂觀測及成效評估,經濟部水利署南區水資源局。
20. 財團法人成大水力海洋研究發展文教基金會(2012),阿公店水庫防淤泥砂觀測及成效評估,經濟部水利署南區水資源局。
21. 財團法人成大水力海洋研究發展文教基金會(2013),阿公店水庫防淤泥砂觀測及成效評估,經濟部水利署南區水資源局。
22. 財團法人成大水力海洋研究發展文教基金會(2014),阿公店水庫防淤泥砂觀測及成效評估,經濟部水利署南區水資源局。
23. 財團法人成大水力海洋研究發展文教基金會(2015),阿公店水庫防淤泥砂觀測及成效評估,經濟部水利署南區水資源局。
24. 財團法人成大水力海洋研究發展文教基金會(2016),阿公店水庫防淤泥砂觀測及成效評估,經濟部水利署南區水資源局。
25. 財團法人成大研究發展基金會(2016),阿公店水庫運用規線探討,經濟部水利署南區水資源局。
26. 國立台灣大學,台美合作案之技術引進及應用研究(1/4),2009,經濟部水利署水利規劃試驗所。
27. 國立交通大學(2006),阿公店水庫平時防淤操作對下游河道之影響研究,經濟部水利署水利規劃試驗所。
28. 詮華國土測繪有限公司(2010),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
29. 詮華國土測繪有限公司(2011),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
30. 詮華國土測繪有限公司(2012),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
31. 詮華國土測繪有限公司(2013),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
32. 詮華國土測繪有限公司(2014),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
33. 詮華國土測繪有限公司(2015),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
34. 詮華國土測繪有限公司(2016),「阿公店水庫暨阿公店溪空庫防淤測量報告書」,經濟部水利署南區水資源局。
35. 蔡秉修(2016),阿公店水庫空庫排砂效率之探討,國立成功大學土水利及海洋工程學系碩士論文。
36. 衛紀淮(2013) ,「細砂入滲理論及動態模擬」,國立台灣大學土木工程系碩士論文
校內:2023-07-01公開