| 研究生: |
李威廷 Lee, Wei-Ting |
|---|---|
| 論文名稱: |
2.4GHz CMOS 單混頻器射頻收發機與
5GHz 功率放大器RFIC 及高Q值螺旋電感
之設計研究 Research on 2.4-GHz CMOS Single-Mixer Transceiver/5-GHz PA RFIC and High-Q Spiral Inductor for Wireless Communication Applications |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | Q值 、射頻收發機 、功率放大器 、螺旋電感 |
| 外文關鍵詞: | RFIC, CMOS |
| 相關次數: | 點閱:92 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究分為三個部分,第一部份是研究設計CMOS高Q值平面螺旋電感及其等效模型,第二部份是5.7GHz CMOS三級A類功率放大器,第三部分是2.4GHz CMOS單混頻器射頻收發機RFIC之設計研究。CMOS雙層並聯平面螺旋電感(TSMC 0.25m)量測後發現其Q值確實比單層螺旋電感有明顯之提升,且圈數愈多,Q值提升之現象愈明顯,且雖然雙層並聯方式會增加螺旋電感走線間之寄生電容,但不會因此使其自振頻率與感值嚴重地降低。除此之外,3D電磁模擬軟體HFSS確實可在一定的準確度下預測螺旋電感之響應。
5.7GHz CMOS三級A類功率放大器(TSMC 0.18m)之功率輸出級採用3.3V高壓電晶體,來達到輸出功率設計目標。量測結果為: 線性功率增益為10.48dB,output 為15.95dBm,OIP3為25.11dBm,PAE約11.37%。Transmit spectrum mask量測方面,最大可通過規範之PA輸出功率為10.74dBm。在802.11a 測試訊號data rate分別為24、36、48與54Mbps下,可通過規範之PA最大輸出功率分別為11.3、10.2、9.6與7.45dBm。
2.4GHz CMOS收發機射頻前端RFIC (TSMC 0.25m)包含具增益調整(AGC)之LNA、T/R switch (series架構)及二極體線性器PA,量測結果為: 接收模式之增益為12.9dB,雜訊指數為5.7dB,input 為-5.3dBm,IIP3為1.5dBm,增益可調範圍為12.93dB~2.24dB,雜訊指數可調範圍為5.7dB~10.35dB;發射模式之線性增益為28.0dB,output 為13.5dBm,OIP3為20.29dBm,PAE約為14.9%,Transmit spectrum mask量測方面,最大可通過規範之PA輸出功率為13.43dBm。
2.4GHz CMOS單混頻器射頻收發機RFIC (TSMC 0.25m) 將T/R switch、LNA、passive switching mixer與VCO整合於同一晶片,與另一PA晶片合而為一2.4GHz單混頻器射頻收發機,接收與發射模式皆利用同一個混頻器做訊號之降頻與升頻,接收與發射模式之切換則運用T/R switch。量測結果為: 接收模式之轉換增益為-0.13dB,雜訊指數為6.16dB,input 為-11.5dBm,IIP3為-5.1dBm,增益可調範圍為-0.13dB~-15.13dB,雜訊指數可調範圍為6.16dB~18.35dB。在802.11b 測試訊號各種data rate下之EVM量測值皆約為1.7%,ACPR量測值皆約為-37dBc;發射模式之轉換增益為14.8dB,output 為3.8dBm,OIP3為7.77dBm。Transmit spectrum mask量測方面,最大可通過規範之輸出功率為3.07dBm。當EVM值為12.62%時,發射機之輸出功率約為3.31dBm。
This thesis presents the design and implementation of a 2.4-GHz CMOS single-mixer transceiver (TSMC 0.25m), a 5.7-GHz PA RFIC (TSMC 0.18m), and research on the high-Q spiral inductor for wireless communication applications. It is found that the CMOS planar spiral inductor shunting two metal layers exhibits a higher quality factor than that with a single metal layer. Although the two-layer spiral inductor has a higher parasitic capacitance, the self-resonant frequency and inductance are close to those of the single-layer spiral inductor.
The 5.7-GHz CMOS three-stage class-A power amplifier (TSMC 0.18m) adopts the 3.3V high-voltage transistor to achieve the design specification. The PA exhibits a linear gain of 10.48dB, output P1dB of 15.95dBm, OIP3 of 25.11dBm and PAE of 11.37%. .The maximum allowable output power is 10.74dBm (data rate=54Mbps) The maximum allowable PA output power is 11.3, 10.2, 9.6 and 7.45dBm at the data rate of 24, 36, 48 and 54Mbps for the EVM measurement.
The 2.4GHz CMOS transceiver RF front-end RFIC (TSMC 0.25m) consists of a LNA(with AGC), a series-type T/R switch and a PA with a diode-linearizer. The CMOS transceiver exhibits a gain of 12.9dB, noise figure of 5.7dB, input P1dB of –5.3dBm, IIP3 of 1.5dBm, gain tuning range of 12.93 to 2.24dB and noise figure tuning range of 5.7 to 10.35dB for the receiving mode. For the transmitting mode, the transceiver exhibits a linear gain of 28.0dB, output P1dB of 13.5dBm, OIP3 of 20.29dBm and PAE of 14.9%. The maximum allowable output power is 13.43dBm(data rate=11Mbps) for the IEEE 802.11b transmit spectrum mask test.
The 2.4GHz CMOS single-mixer transceiver (TSMC 0.25m) integrates a T/R switch, a LNA, a passive switching mixer and a VCO into a single chip with the PA in a separated chip. The single-mixer transceiver architecture uses the same mixer in up- and down-conversion. The receiver exhibits a conversion gain of –0.13dB, noise figure of 6.16dB, input P1dB of –11.5dBm, IIP3 of –5.1dBm, gain tuning range of –0.13 to –15.13dB and noise figure tuning range of 6.16 to 18.35dB. The measured EVM and ACPR are all about 1.7% and –37dBc at the data rate of 1, 2, 5.5 and 11Mbps, respectively, for the IEEE 802.11b signal test. The transmitter exhibits a conversion gain of 14.8dB, output P1dB of 3.8dBm, OIP3 of 7.77dBm. The maximum allowable output power is 3.07dBm for the IEEE 802.11b transmit spectrum mask test (data rate = 11Mbps) with an EVM of 12.62% at an output power of 3.3dBm.
[1] 顏呈機,2.4GHz ISM頻帶收發機射頻前端CMOS RFIC及使用二極體線性器CMOS PA之研製,國立成功大學電機工程研究所碩士論文,民國九十一年。
[2] C. Patrick Yue and S. Simon Wong, “Design strategy of on-chip inductors for highly integrated RF systems,” in Proc. 36th Design Automation Conf., pp. 982-987, June 1999.
[3] Chris Toumazou, George Moschytz and Barrie Gilbert, Trade-Offs in Analog Circuit Design The Designer’s Companion, Kluwer Academic Publishers, 2002.
[4] E. B. Rosa and F. W. Grover, “Formulas and Tables for the Calculation of mutual and self-inductance,” Bull. Bereau of Standards, vol. 8, no. 2, pp. 1237, 1912.
[5] H. M. Greenhouse, “Design of Planar Rectangular Microelectronic Inductors,” IEEE Trans. Parts, Hybrids and Packaging, pp. 101-109, June 1974.
[6] Sunderarajan S. Mohan, The Design, Modeling and Optimization of On-Chip Inductor and Transformer Circuits, Ph. D. dissertation, Dept. Elect. Eng., Stanford University, Dec. 1999.
[7] S. S. Mohan, M del Mar Hershenson, St P. Boyd, and Thomas H. Lee, “Simple Accurate Expressions for Planar Spiral Inductances,” IEEE J. Solid-State Circuits, vol. 34, no. 10, Oct. 1999.
[8] A. M. Niknejad and R. G. Meyer, “Analysis, design and optimization of spiral inductors and transformers for Si RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 1470-1483, Oct. 1998.
[9] Ryan L. Bunch, David I. Sanderson and Sanjay Raman, “Quality Factor and Inductance in Differential IC Implementations,” Microwave Magazine, pp. 82-91, June 2002.
[10] Chuan-Jane Chao, Shyh-Chyi Wong, Chi-Hung Kao, Ming-Jer Chen, Len-Yi Leu and Kuang-Yi Chiu, “Characterization and Modeling of On-Chip Spiral Inductors for Si RFICs,” IEEE Trans. Semiconductor Manufacturing, vol. 15, no. 1, Feb. 2002.
[11] D. M. Pozar, Microwave Engineering, Addison-Wesley, 1990.
[12] Y. C. Shih, C. K. Pao and T. Itoh, “A Broadband Parameter Extraction Technique for the Equivalent Circuit of Planar Inductors,” in IEEE MTT-S Dig., pp. 1345-1348, 1992.
[13] 李莉娥,螺旋型電感的物理模型與參數萃取,國立成功大學電機工程研究所碩士論文,民國八十九年。
[14] C. Patrick Yue and S. Simon Wong, “A Physical Model for Planar Spiral Inductors on Silicon,” IEEE Trans. Electron Devices, vol. 47, pp. 560-568, Mar. 2000.
[15] J. A. Power, S. C. Kelly, E. C. Griffith and M. O’Neill, “An Investigation of On-Chip Spiral Inductors on a 0.6m BiCMOS Technology for RF Applications,” in Proc. Microelectronic Test Structures Int. Conf., vol.12, pp. 18-23, Mar. 1999.
[16] Dylan Kelly and Frank Wright, “Improvements to Performance of Spiral Inductors on Insulators,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., vol. , pp. 431-433, June 2002.
[17] William B. Kuhn and Noureddin M. Ibrahim, “Analysis of Current Crowding Effects in Multiturn Spiral Inductors,” IEEE Trans. Microwave Theory and Techniques, vol. 49, no. 1, Jan. 2001.
[18] Joachim N. Burghartz and Behzad Rejaei, “On the Design of RF Spiral Inductors on Silicon,” IEEE Trans. Electron Devices, vol. 50, no. 3, Mar. 2003.
[19] Ali. M. Niknejad, and Robert G. Meyer, Design, Simulation and Applications of Inductors and Transformers for Si RF ICs, Kluwer Academic Publishers, 2000.
[20] Joachim N. Burghartz, “Progress in RF Inductors on Silicon-Understanding Substrate Losses,” in Int. Electron Devices Meeting Tech. Dig., pp. 523-526, Dec. 1998.
[21] Y. Emery Chen, David Bien, Deukhyoun Heo and Joy Laskar, “Q-enhancement of Spiral Inductor with N+-Diffusion Patterned Ground Shields,” in IEEE MTT-S Symp. Dig., vol. 2, pp. 1289-1292, May 2001.
[22] C. B. Sia, K. S. Yeo, W. L. Goh, T. N. Swe, C. Y. Ng, K. W. Chew, W. B. Loh, Sanford Chu and Lap Chan, “Effects of Polysilicon Shield on Spiral Inductors for Silicon-Based RF IC's,” in Proc. VLSI Technology, Systems and Applications Symp., pp. 158-161, Apr. 2001.
[23] Chia-Ying Lee, Yao-Huang Kao, Jiunn-Jye Luo and Kow-Ming Chang, “The Enhanced Q Spiral Inductors with MEMS Technology for RF Applications,” in Proc. Asia-Pacific Microwave Conf., pp. 1326-1329, Dec. 2000.
[24] Kevin J. Chen, Wai Cheong Hon, Jinwen Zhang and Lydia L. W. Leung, “CMOS-Compatible Micromachined Edge-Suspended Spiral Inductors with High Q-Factors and Self-Resonance Frequencies,” IEEE Electron Device Lett., vol. 25, pp. 363-365, June 2004.
[25] H. Lakdawala, X. Zhu, H. Luo, S. Santhanam, L. R. Carley and G. K. Fedder, “Micromachined High-Q Inductors in 0.18m Cu Interconnect Low-K CMOS,” IEEE J. Solid-State Circuits, vol. 37, pp. 394-403, Mar. 2002.
[26] Mehmet Ozgur, Mona E. Zaghloul and Michael Gaitan, “High Q backside micromachined CMOS inductors,” in Proc. IEEE Circuits and Systems Symp., vol. 2, 30 May-2 June, 1999.
[27] Min Park, Seonghearn Lee, Cheon Soo Kim, Hyun Kyu Yu and Kee Soo Nam, “The Detailed Analysis of High Q CMOS-Compatible Microwave Spiral Inductors in Silicon Technology,” IEEE Trans. Electron Devices, vol. 45, no. 9, Sept. 1998.
[28] IEEE Std 802.11a-1999, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5GHz Band.”
[29] Steve C.Cripps, RF Power Amplifier for Wireless Communications,Artech House1999.
[30] 邱永明,應用於2.4及5.7GHz 802.11 WLAN之CMOS單晶射頻積體電路,國立成功大學電機工程研究所碩士論文,民國九十二年。
[31] 廖哲宏,應用於IEEE 802.11a WLAN之5.7GHz CMOS射頻接收機及功率放大器RFICs,國立成功大學電機工程研究所碩士論文,民國九十二年。
[32] Kazuya Yamamoto, Tetsuya Heima, Akihiko Furukawa, Masayoshi Ono, Yasushi Hashizume, Hiroshi Komurasaki, Shigenobu Maeda, Hisayasu Sato and Naoyuki Kato, “A 2.4-GHz-Band 1.8-V Operation Single-Chip Si-CMOS T/R-MMIC Front-End with a Low Insertion Loss Switch,” IEEE J. Solid-State Circuits, vol. 36, no. 8, pp. 1186-1197, Aug. 2001.
[33] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[34] Cheng-Chi Yen and Huey-Ru Chuang, “A 0.25-m 20-dBm 2.4GHz CMOS Power Amplifier With an Integrated Diode Linearizer,” IEEE Microwave & Wireless Component Lett., vol. 13, no. 2, pp. 45-47, Feb. 2003.
[35] T. Yoshimasu, M. Akagi, N. Tanba and S. Hara, “An HBT MMIC Power Amplifier with an Integrated Diode Linearizer for Low-Voltage Portable Phone Application,” IEEE J. Solid-State Circuits, vol. 33, no. 9, pp. 1290-1296, 1998.
[36] S.-Y. Liu and H.-R. Chuang, “2.4 GHz Transceiver RF Front-end for ISM-Band Digital Wireless Communications,” Applied Microwave and Wireless, pp. 32-48, June 1998.
[37] IEEE Std 802.11b-1999, “Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) specifications: Higher-Speed Physical Layer Extension in the 2.4GHz Band.”
[38] J. Pihl, K. T. Christensen, E. Bruun, “Direct Downconversion with Switching CMOS Mixer,” in Proc. IEEE Int. Circuits and Systems Symp., vol. 1, pp. 117-120, May 2001.
[39] M. C. Tsai, M. J. Schindler, W. Struble, M. Ventresca, R. Binder, R. Waterman and D. Danzilio, “A Compact Wideband Balanced Mixer,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 5-8, May 1994.
[40] A. Rofougaran, G. Chang, J. J. Rael, M. Rofougaran, S. Khorram, M-K. Ku, E. Roth, A. A. Abidi and H. Samueli, “A 900 MHz CMOS Frequency-Hopped Spread-Spectrum RF Transmitter IC,” in Proc. Custom Integrated Circuits Conf., pp. 209-212, May. 1996.
[41] Philips Semiconductor, Philips RF/Wireless Communications Data Handbook, 1996.