| 研究生: |
蕭凱文 Hsiao, Kai-Wen |
|---|---|
| 論文名稱: |
應用FLOW-3D模擬斜坡矩形束縮渠道之斜震波研究 Application of Flow-3D on shock wave simulation in an inclined rectangular chute construction |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 斜震波 、FLOW-3D 、斜坡矩形束縮渠道 、員山子分洪渠道 |
| 外文關鍵詞: | Shock wave, Inclined chute contraction, FLOW-3D, Yuanshanzih Flood Channel |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
束縮渠道是常見的水工結構物,用以銜接兩不同高程及斷面大小之渠道。由於束縮渠岸反作用力的影響,水流流經束縮渠道會產生斜向交波現象,稱之為斜震波 (Shock wave)。張家榮 (2008)曾經進行實驗研究探討水流流經斜坡矩形束縮渠道所產生之斜震波特性。本研究以張家榮的斜坡矩形束縮渠道實驗模型佈置為基礎,使用三維水流數值模式 (FLOW-3D)來模擬束縮渠道上之斜震波現象。由於斜坡矩形束縮渠道實驗模型包含水平段及斜坡段,因此使用多重網格功能將水平段及斜坡段分開處理以減少網格數量及增加運算效率。依據FLOW-3D數值模擬結果,分析 (1)斜震波縱斷面及橫斷面之水深、 (2)斜震波波角、 (3)斜震波交波位置、及 (4)斜震波交波波高等特性與水流入流條件之關係。
數值模擬結果並與張家榮的實驗結果相比較,結果顯示數值模擬結果與張家榮實驗結果極為相似,此說明FLOW-3D能夠有效模擬斜坡矩形束縮渠道斜震波現象。經由數值模擬本研究將張家榮實驗所得之經驗關係式的入流福祿數適用範圍從福祿數3.51提升至7.27。此外,本研究進一步應用FLOW-3D模擬員山子分洪斜坡矩形束縮渠道的斜震波,分別以納莉颱風流量及200年重現期距流量作為入流模擬條件,探討員山子分洪斜坡矩形束縮渠道的斜震波水理特性,並比較有導流墩設置及無導流墩設置對斜震波水理特性之影響。
This study presents the results of numerical simulations on the characteristics of hydraulic shock waves in an inclined chute contraction. A three-dimensional numerical hydraulic simulation model FLOW-3D is applied to the simulation of hydraulic shockwaves. This numerical model has been proved having good ability in simulating hydraulic shock waves through the comparison with experimental results. The simulated shock waves parameters such as the shock angle, maximum shock wave height and maximum shock waves position for various conditions are compared with those calculated by the empirical relations obtained in the predecessor's research. The numerical results validate the applicability of these empirical relations and also extend their applicability to higher approach Froude numbers. In addition, this study applys three-dimensional numerical model to study the characteristics of hydraulic shock waves in Yuanshanzih Flood Channel. Compare the effect of diversion pier under 200-yr return period accumulative rainfall.
參考文獻
1.吳德辰 (1997),「束縮段渠道超臨界流水理分析」,國立台灣大學農業工程學系研究所碩士論文。
2.林煒程 (2011),「FLOW-3D模式運用於異重流運移數值模擬」,長榮大學土地管理與開發學系研究所碩士論文。
3.徐培玠 (1994),「明渠超臨界流斜震波之研究」,國立台灣大學土木工程學系研究所碩士論文。
4.張家榮 (2008),「斜坡矩形束縮渠道斜震波及水躍研究」,國立成功大學水利及海洋工程學系研究所博士論文。
5.陳俊合 (2012),「FLOW-3D應用於孔隙結構物消波特性之研究」,國立中山大學海洋環境及工程學系研究所碩士論文。
6.陳建宇 (2007),「環圈堆保護橋墩之試驗及其三維流場之數值模擬」,國立成功大學水利及海洋工程學系研究所碩士論文。
7.黃上軒 (2011),「防砂壩改善對生態棲地影響之數值研究」,逢甲大學水利工程與資源保育學系研究所碩士論文。
8.黃聰憲 (2007),「漏斗式排砂器水流特性及排砂效率之試驗研究」,國立成功大學水利及海洋工程學系研究所碩士論文。
9.楊政翰 (2008),「FLOW-3D應用於土石流防砂壩前流場及衝擊力研究」,國立成功大學水利及海洋工程學系研究所碩士論文。
10.經濟部水利署水利規劃試驗所 (2002),「基隆河員山子分洪水工模型試驗(第一年)」,經濟部水利署。
11.經濟部水利署水利規劃試驗所 (2003),「基隆河員山子分洪水工模型試驗(第一年)」,經濟部水利署。
12.經濟部水利署水利規劃試驗所 (2010),「員山子分洪入流段水文量測及水理分析(第一年)」,經濟部水利署。
13.經濟部水利署水利規劃試驗所 (2011),「員山子分洪入流段水文量測及水理分析(第二年)」,經濟部水利署。
14.褚懷宇 (2010),「波浪與複合式透水結構物交互作用之研究」,國立台灣海洋大學河海工程學系研究所碩士論文。
15.鄧良俊 (2007),「以界面捕捉法模擬三維斜水躍問題」,國立台灣大學生物環境系統工程學系研究所碩士論文。
16.鄧慰先 (1998),「明渠急變流之數值模擬」,國立台灣大學農業工程學系研究所博士論文。
17.賴堅戊 (2009),「波浪於粗粒徑斜坡底床傳遞之試驗與數值研究」,國立成功大學水利及海洋工程學系研究所博士論文。
18.蘇騰鋐 (1998),「超臨界流渠道束縮段之水理分析」,國立台灣大學農業工程學系研究所碩士論文。
19.蘇騰鋐 (2003),「二維水深平均束縮渠道流場之解析」,國立台灣大學農業工程學系研究所博士論文。
20.Afshar, H. and Hoseini S. H. (2013), “Experimental and 3-D Numerical Simulation of Flow over a Rectangular Broad-Crested Weir” International Journal of Engineering and Advanced Technology, 2, pp.214-219.
21.Alcrudo F. and Garcia-Navarro P. (1993), “A High-resolution Godunov-type Scheme in Finite Volumes for the 2D Shallow-water Equations,” International Journal for Numerical Methods in Fluids, 16, pp. 489-505.
22.Anastasiou, K. and Chan, C. T. (1997), “Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes,” International Journal for Numerical Methods in Fluids, 24, pp. 1225-1245.
23.Bova, S. W. and Carey, G. F. (1996), “An Entropy Variable Formulation and Applications for the Two-dimensional Shallow Water Equations,” International Journal for Numerical Methods in Fluids, 23, pp. 29-46.
24.Causon, D. M., Mingham, C. G. and Ingram, D. M. (1999), “Advances in Calculation Methods for Supercritical Flow in Spillway Channels,” Journal of Hydraulic Engineering, ASCE, 125, pp. 1039-1050.
25.Chow, V. T., “Open-Channel Hydraulics,” McGraw-Hill Book Co. Inc. New York.
26.Cohen J. (1992), “Statistical Power Analysis,” Current Directions in Psychological Science, 1, pp. 98-101.
27.Fang, X., Jiang, S. and Alam, S. (2010), ”Numerical Simulations of Efficiency of Curb-Opening Inlets” Journal of Hydraulic Engineering, ASCE, 136, pp. 62-66.
28.Flow Science (2008), “User manual of FLOW-3D version 10.1,” Flow Science.
29.Hager, W. (1989), “Hydraulic jump in U-shape channel,” Journal of Hydraulic Engineering, ASCE, 115, pp. 667-675.
30.Hager, W. (1989), “Supercritical Flow in Channel Junctions,” Journal of Hydraulic Engineering, ASCE, 115, pp. 595-616.
31.Hager, W., Schwalt, M., Jimenez, O. and Chaudhry, M. (1994), “Supercritical Flow Near an Abrupt Wall Deflection,” Journal of Hydraulic Research, IAHR, 32, pp. 103-118.
32.Heggen, R. (1988), “Choke angles in supercritical contractions,” Journal of Hydraulic Engineering, ASCE, 114, pp. 441-445.
33.Hirt, C. W. and Nichols B. D. (1981), “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of computational physics , 39, pp. 201-255.
34.Hirt, C. W. and Sicilian, J. M. (1985), “A porosity technique for the definition of obstacles in rectangular cell meshes,” Flow Science, Inc, Los Alamos, New Mexico.
35.Hsu, M. H., Teng, W. H. and Chintu Lai (1998), “Numerical Simulation of Supercritical Shock Wave in Channel Contraction,” Computers and Fluids, 27, pp.347-365.
36.Ippen, A. (1943), “Gas-wave analogies in open channel flow,” Proc. 2nd Hydraulics conf., Bulletin 27, studies in Engineering, University of Iowa, Iowa.
37.Ippen, A. (1951), “Mechanics of Supercritical Flow,” Tans., ASCE, 116, pp. 268-295.
38.Ippen, A. and Dawson, J. (1951), “Design of Channel Contractions-High Velocity flow in Open Channels,” Trans., ASCE, 116, pp. 326-346.
39.Ippen, A. and Harleman, D.(1956), “Verification of Theory for Oblique Standing Waves,” Trans., ASCE, 121, pp. 678-694.
40.Jan, C. D., Chang, C. J., Lai, J. S. and Guo, W. D. (2009), “Characteristics of Hydraulic Shock Waves in an Inclined Chute Contraction-Experiments,” Journal of Mechanics, 25, pp. 129-136.
41.Jan, C. D., Chang, C. J., Lai, J. S. and Guo, W. D. (2009), “Characteristics of Hydraulic Shock Waves in an Inclined Chute Contraction - Numerical Simulations,” Journal of Mechanics, 25, pp. 75-84.
42.Jimenez, O. and Hanif Chaudhry M. (1988), “Computation of Supercritical Free-surface Flows,” Journal of Hydraulic Engineering, ASCE, 114, pp. 377-395.
43.Johnson, M. C. and Savage, B. M. (2006), “Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater,” Journal of Hydraulic Engineering, ASCE, 132, pp. 1353-1357.
44.Kim, C., Kim, J and Kang, J. (2013), “Analysis of the Cause for the Collapse of a Temporary Bridge Using Numerical Simulation,” Engineering, Scientific Research, 5, pp. 997-1005.
45.Klonidis, A. J. and Soulis J. V. (1997), “An implicit numerical scheme for bed morphology calculations,” Computational Methods in Experimental Measurements VIII , 17, pp. 381-390.
46.Kruger, S. and Rutschmann, P. (2006) , “Modeling 3D supercritical flow with extended shallow-water approach,” Journal of Hydraulic Engineering, ASCE, 132, pp. 916-926.
47.Lai, J. S., Lin G. F. and Guo, W. D. (2005), “An Upstream Flux-Splitting Finite-Volume Scheme for 2D Shallow Water Equations,” International Journal for Numerical Methods in Fluids, 48, pp. 1149-1174.
48.Lin, G. F., Lai, J. S. and Guo, W. D. (2005), “High-Resolution TVD Schemes in Finite Volume Method for Hydraulic Shock Wave Modeling,” Journal of Hydraulic Research, IAHR, 43, pp.376-389.
49.Lin, G. F., Lai, J. S., and Guo, W. D. (2003), “Finite-volume component-wise TVD schemes for 2D shallow water equations,” Advances in Water Resources, 26, pp. 861-873.
50.Molls, T. and Chaudhry, M. H. (1995), “Depth-averaged open channel flow model,” Journal of Hydraulic Engineering, ASCE, 121, pp. 453-464.
51.Nash, J. E. and Sutcliffe, J. V. (1970), “River flow forecasting through conceptual models part I — A discussion of principles,” Journal of Hydrology, 10, pp. 282-290.
52.Ozmen-Cagatay, H. and Kocaman, S. (2012), “Investigation of Dam-Break Flow Over Abruptly Contracting Channel With Trapezoidal-Shaped Lateral Obstacles” Journal of Fluids Engineering, ASME, 134, pp.081204-1-081204-7.
53.Reinauer, R. and Hager, W. (1996), “Shockwave Reduction by Chute Diffractor,” Experiments in Fluids, 21, pp. 209-217.
54.Reinauer, R. and Hager, W. (1998), “Supercritical flow in chute contraction,” Journal of Hydraulic Engineering, ASCE, 124, pp. 55-64.
55.Saad, Y. and Schultz, M. H. (1986), “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing, 7, pp. 856-869.
56.Schwalt, M. and Hager, W. (1994), “Shock wave reduction by bottom drop,” Journal of Hydraulic Engineering, ASCE, 120, pp. 1222-1227.
57.Stockslt, R. L., and Berger, R. C. (1994), “HIVEL2D: A Two-Dimensional Flow Model for High-Velocity Channels,” US Army Corps of Engineers Waterways Experiment Station.
58.Sturm, T. W. (1985), “Simplified Design of Contractions in Supercritical Flow,” Journal of Hydraulic Engineering, ASCE, 111, pp. 871-892.
校內:2024-08-01公開