| 研究生: |
蕭嘉履 Hsiao, Chia-lu |
|---|---|
| 論文名稱: |
微波合成二氧化錫在染料敏化太陽能電池之應用 Microwave-assisted Synthesis of SnO2 for Dye-sensitized Solar Cells |
| 指導教授: |
陳昭宇
Chen, Chao-yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 微波合成 、二氧化錫 、染料敏化太陽能電池 |
| 外文關鍵詞: | Microwave-assisted, SnO2, Dye-sensitized, Quantum dot dye-sensitized solar cell |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的是利用微波合成法取代傳統水熱法製備二氧化錫並應用於染料
敏化太陽能電池(Dye-sensitized Solar Cells)以及量子點染料敏化太陽能電池(Quantum Dots on Dye-Sensitized Solar Cell)研究水解及離子液體系統合成二氧化錫。本研究一開始選擇以水為溶劑合成SnO2及利用離子液體幫助我們合成二氧化錫,選擇適合當做光電極材料的二氧化錫,再研究不同PH值與Particle Size的關係,以了解我們二氧化錫在酒精中分散情形,接著配置成二氧化錫醬料,利用網印法將二氧化錫製作成光電極搭配上SQ2染料組裝成液態染料敏化太陽能電池使其最高轉換效率可達到0.502%、組裝成固態染料敏化太陽能電池使其最高轉換效率可達到0.183%,雖然與二氧化鈦相比效率無法超過,但製程時間可大幅地縮短;搭配上量子點Ag2S在量子點固態染料敏化太陽能電池元件上,其短路電流密度達到0.669mA/cm2超越了二氧化鈦的短路電流密度,而轉換效率達到0.028%超越了二氧化鈦的光電極。
The main purposes of this study are replacing conventional hydro-thermal method by microwave heating and using water or ionic liquid solvent as reaction medium to rapidly synthesize SnO2. In the first part, we use water as the solvent and (Tin(IV) chloride anhydrous, SnCl4) as the precursor for hydrolysis. The solution is subsequently heated with microwave for crystal growth. The reaction time could be shortened into few minutes.
Then we chose suitable particle size to prepare SnO2 paste on the power conversion efficiency of Dye-Sensitized Solar Cells(DSCs) and Quantum dots Dye-Sensitized Solar Cells(QDSCs). To realize the relationship between PH value and particle size can help us to understand tin oxide dispersed in alcohol, then preparing tin oxide paste.
Using the screen printing method will be made into tin dioxide photoelectrode, assembled into a liquid dye sensitized solar cell with SQ2 dye, so that the maximum conversion efficiency can reach 0.502%, in solid-state dye-sensitized solar cells so that the maximum conversion efficiency can reach 0.183%. With Ag2S quantum dots in a quantum dot solid-state dye-sensitized solar cell, its short circuit current density of tin dioxide photoelectrode over the short circuit current density of titanium dioxide photoelectrode. Moreover, the conversion efficiency reach to 0.028% and also over titanium oxide photoelectrode.
1.Grätzel, M., Nature 2000, 403, 363.
2.太陽能電池元件導論: 材料,元件,製程,系統. 全威圖書: 2008.
3.Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25 (5), 676.
4.Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W., Solar cell efficiency tables (version 37). Progress in Photovoltaics: Research and Applications 2011, 19 (1), 84-92.
5.Kearns, D.; Calvin, M., Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. The Journal of Chemical Physics 1958, 29 (4), 950.
6.Hyo Won Lee, J.-G. A., Hee-Kyoon Yoon, Hyosook Jang, Nam Gwang Kim, Youngkyu Do, sedoiD gnittimE-thgiL cinagrO tnecserohpsohP rof slairetaM reyaL gnikcolB-eloH sa seitreporP riehT dna sevitavireD enilorhtnanehp]01,1[ordyhiD-6,5 fo sisehtnyS. Soc 2005, 26, 10.
7.Nozik, A. J., PHOTOELECTROCHEMISTRY: APPLICATIONS TO
SOLAR ENERGY CONVERSION. Annual Review of Physical Chemistry 1978, 29, 189-222.
8.Allen, S. C. a. R. J., Dye-Sensitized Photopolymerization Processes." 11. A Comparison of the Photoactivities of Thionine and Methylene Blue. The Journal of Physical Chemistry 1965, 69, 647-656.
9.D. R. Kearns, R. A. H., A. U. Khan and P. Radlick, Evidence for the Participation of lZ,+ and ‘A, Oxygen in Dye-Sensitized
Photooxygenation Reactions. . Journal of the American Chemical Society 1967, 89, 5456-5457.
10.H. Tsubomura, M. M., Y. Nomura and T. Amamiya, Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 1976, 261, 402-403.
11.(a) Grätzel, M., Inorganic Chemistry. Inorganic Chemistry Communications 2005, 44, 6841-6851; (b) Z. S. Wang, M. Y., K. Sayama and H. Sugihara, Chemistry of Materials. 2006, 18, 2912-2916.
12.Shockley, W.; Queisser, H. J., Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics 1961, 32 (3), 510.
13.Md. Anower Hossain, J. R. J., Zhen Yu Koh, and Qing Wang, Carrier Generation and Collection in CdS/CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities. ACS nano 2011, 5, 3172-3181.
14.(a) Liu, H.; Dong, X. N.; Li, G. J.; Wang, X. F.; Zhu, Z. F., Solvothermal Synthesis and Photocatalysis of SnO<sub>2</sub> Nanocrystal Microspheres. Advanced Materials Research 2011, 412, 40-43; (b) Guo, C.; Cao, M.; Hu, C., A novel and low-temperature hydrothermal synthesis of SnO2 nanorods. Inorganic Chemistry Communications 2004, 7 (7), 929-931.
15.L.B. Fraigi, D. G. L., N.E. Walso ̈e de Reca Comparison between two combustion routes for the synthesis of nanocrystalline SnO2 powders. Materials Letters 2001, 47, 262–266.
16.L.M. Cukrov, P. G. M., K. Galatsis, W. Wlodarski, Gas sensing properties of nanosized tin oxide synthesised by mechanochemical processing. Sensors and Actuators B 2001, 491-495.
17.(a) Mingos, D. M. P.; Baghurst, D. R., Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chemical Society Reviews 1991, 20 (1), 1; (b) HICKS, G. M. a. R., APPLICATIONS OF MICROWAVE-ACCELERATED ORGANIC SYNTHESIS. Radial. Phys. Chem. 1995, 45 (No.4), 567-579.
18.Xiao, L.; Shen, H.; von Hagen, R.; Pan, J.; Belkoura, L.; Mathur, S., Microwave assisted fast and facile synthesis of SnO(2) quantum dots and their printing applications. Chem Commun (Camb) 2010, 46 (35), 6509-11.
19.(a) Henry C. Leventis, F. O. M., Javeed Akhtar, Mohammad Afzaal, Paul O’Brien, and Saif A. Haque, Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide/PbS Quantum Dot/Organic Hole Conductor Heterojunctions. J. Am. Chem. Soc 2010; (b) Priti Tiwana, P. D., Michael B. Johnston, Henry J. Snaith, and Laura M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS nano 2011, 5, 5158; (c) Tubtimtae, A.; Wu, K.-L.; Tung, H.-Y.; Lee, M.-W.; Wang, G. J., Ag2S quantum dot-sensitized solar cells. Electrochemistry Communications 2010, 12 (9), 1158-1160; (d) Hossain, M. A.; Koh, Z. Y.; Wang, Q., PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing. Physical chemistry chemical physics : PCCP 2012, 14 (20), 7367-74.
20.Bandara, H. M. N.; Rajapakse, R. M. G.; Murakami, K.; Kumara, G. R. R. A.; Anuradha Sepalage, G., Dye-sensitized solar cell based on optically transparent TiO2 nanocrystalline electrode prepared by atomized spray pyrolysis technique. Electrochimica Acta 2011, 56 (25), 9159-9161.
21.G. Redmond, D. F. a. M. G. t., High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes. Chemistry of Materials 1994, 6, 686-691.
22.Suzanne Ferrere, A. Z., and Brian A. Gregg, Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. J. Phys. Chem. 1997, 101, 4490-4493.
23.A. Turkovi6 , Z. C. O., Dye-sensitized solar cell with CeO 2 and mixed CeO2/SnO2photoanodes. SolarEnergyMaterialsand SolarCells 1997, 45, 275-281.
24.Grätzel, M., Nature. 2001, 414, 338-344.
25.Xing, J.; Fang, W. Q.; Li, Z.; Yang, H. G., TiO2-Coated Ultrathin SnO2Nanosheets Used as Photoanodes for Dye-Sensitized Solar Cells with High Efficiency. Industrial & Engineering Chemistry Research 2012, 51 (11), 4247-4253.
26.張宇, 孫., 王紅娟, 花狀奈米結構SnO2顆粒的低溫水浴合成及其光催化性能. 華南師範大學學報 2012, 44.
27.Yeh, H.-C. C. a. C.-S., Hydrothermal Synthesis of SnO2 Nanoparticles and Their Gas-Sensing of Alcohol. J. Phys. Chem. 2007, (111).
28.Grätzel, M., Recent Advances in Sensitized Mesoscopic Solar
Cells. Accounts of Chemical Research 2009.
29.Geiger, T.; Kuster, S.; Yum, J.-H.; Moon, S.-J.; Nazeeruddin, M. K.; Grätzel, M.; Nüesch, F., Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO2Nanocrystalline Films. Advanced Functional Materials 2009, 19 (17), 2720-2727.
30.Lupo, U. B. a. D., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395.
31.Peng Wang, S. M. Z., Jacques-E. Moser, and Michael Gra1tzel, A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar
Cells. J. Phys. Chem. 2003, 107.
32.Grätzel, A. K. a. M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 1996, 44.
33.Chiang, Y.-F.; Tsai, C.-H.; Chen, P.; Guo, T.-F., Bifacial transparent solid-state dye-sensitized solar cell with sputtered indium-tin-oxide counter electrode. Solar Energy 2012, 86 (6), 1967-1972.
34.(a) Snaith, H. J.; Ducati, C., SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano letters 2010, 10 (4), 1259-65; (b) Docampo, P.; Tiwana, P.; Sakai, N.; Miura, H.; Herz, L.; Murakami, T.; Snaith, H. J., Unraveling the Function of an MgO Interlayer in Both Electrolyte and Solid-State SnO2Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (43), 22840-22846.
35.Ding, I. K.; Tétreault, N.; Brillet, J.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; Sauvage, F.; Grätzel, M.; McGehee, M. D., Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance. Advanced Functional Materials 2009, 19 (15), 2431-2436.
36.Sadoughi, G.; Sivaram, V.; Gunning, R.; Docampo, P.; Bruder, I.; Pschirer, N.; Irajizad, A.; Snaith, H. J., Enhanced electronic contacts in SnO2-dye-P3HT based solid state dye sensitized solar cells. Physical chemistry chemical physics : PCCP 2013, 15 (6), 2075-80.
37.Bilecka, I.; Niederberger, M., Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2 (8), 1358.
38.Gregory J. Wilson, A. S. M., David R. G. Mitchell, Jamie C. Schulz, and Geoffrey D. Will, Modification of TiO2 for Enhanced Surface Properties: Finite Ostwald
Ripening by a Microwave Hydrothermal Process. Langmuir 2006, 22, 2016-2027.
39.Wiesbrock, F.; Hoogenboom, R.; Schubert, U. S., Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives. Macromolecular Rapid Communications 2004, 25 (20), 1739-1764.
40.Fang, B.; Yu, J.; Ge, X.; Yang, C., Ionic liquid assisted hydrothermal synthesis of monodispersed mesoporous SnO2 nanospheres. Materials Letters 2012, 73, 229-231.
41.Ahmed, A. S.; Azam, A.; Muhamed Shafeeq, M.; Chaman, M.; Tabassum, S., Temperature dependent structural and optical properties of tin oxide nanoparticles. Journal of Physics and Chemistry of Solids 2012, 73 (7), 943-947.
42.Vuong, D. D.; Sakai, G.; Shimanoe, K.; Yamazoe, N., Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application. Sensors and Actuators B: Chemical 2004, 103 (1-2), 386-391.
43.A. SHARMA, D. P., K. D.VERMA, Optical characterization of hydrothermally grown SnO2 nanocrystals. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS 2009, 11 (3), 331-337.
44.Mendes, P. G.; Moreira, M. L.; Tebcherani, S. M.; Orlandi, M. O.; Andrés, J.; Li, M. S.; Diaz-Mora, N.; Varela, J. A.; Longo, E., SnO2 nanocrystals synthesized by microwave-assisted hydrothermal method: towards a relationship between structural and optical properties. Journal of Nanoparticle Research 2012, 14 (3).
45.Zhang, J.; Gao, L., Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. Journal of Solid State Chemistry 2004, 177 (4-5), 1425-1430.
46.Krishnakumar, T.; Jayaprakash, R.; Parthibavarman, M.; Phani, A. R.; Singh, V. N.; Mehta, B. R., Microwave-assisted synthesis and investigation of SnO2 nanoparticles. Materials Letters 2009, 63 (11), 896-898.
47.(a) NIEDERBERGER, M., Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles. Acc. Chem. Res. 2007, 40, 793–800; (b) Pinna, N.; Neri, G.; Antonietti, M.; Niederberger, M., Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing. Angewandte Chemie 2004, 116 (33), 4445-4449; (c) Ba, J.; Polleux, J.; Antonietti, M.; Niederberger, M., Non-aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures. Advanced Materials 2005, 17 (20), 2509-2512.
48.R. Vogel, P. H., and H. Weller., Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors.J. Phys. Chem. 1994, 98 (3183-3188).
49.Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P., Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310 (5747), 462-5.
50.(a) Amemiya, S.; Bard, A. J.; Fan, F. R.; Mirkin, M. V.; Unwin, P. R., Scanning electrochemical microscopy. Annu Rev Anal Chem (Palo Alto Calif) 2008, 1, 95-131; (b) Marc L. Breen, J. T. W., IV, and Daniel K. Schwartz, <Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films.pdf>. Chem. Mater. 1998, 10, 710-717.
51.(a) Collier, C. P., Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition. Science 1997, 277 (5334), 1978-1981; (b) Z. Y. Pan, † X. J. Liu,‡ S. Y. Zhang,‡ G. J. Shen,† L. G. Zhang,† Z. H. Lu,*,† and J. Z. Liu†, Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation. J. Phys. Chem. B 1997, 101, 9703-9709 9703.
52.MURALI SASTRY, † MALA RAO,‡ AND KRISHNA N. GANESH, Electrostatic Assembly of Nanoparticles and Biomacromolecules. Acc. Chem. Res. 2002, 35, 847-855.
53.Laila Sheeney-Haj-Ichia, S. P., Yosef Gofer, and Itamar Willner, <Enhanced Photoelectrochemistry in CdS:Au Nanoparticle Bilayers†.pdf>. Adv. Funct. Mater. 2004, 14.
54.Kamat, N. C. a. P. V., Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by
Adsorption of Gold Nanoparticles. J. Phys. Chem. B 2000, 104, 10851-10857.
校內:2015-08-01公開