簡易檢索 / 詳目顯示

研究生: 蕭竹芸
Hsiao, Chu-Yun
論文名稱: 矽奈米晶包埋於富矽氧化物薄膜之合成與光電特性研究
Synthesis and Optoelectric Properties of Si Nanocrystal Embedded Si-Rich Oxide Films
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 112
中文關鍵詞: 濺鍍法離子束輔助鍍膜富矽氧化物富矽氧化物/二氧化矽超晶格發光元件
外文關鍵詞: sputtering, ion beam assisted sputtering, Si-rich oxide, Si-rich oxide/SiO2 superlattice, light-emitting diode
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽塊材為非直接能隙的材料,但在尺寸奈米化後,因量子侷限效應使矽量子點具有直接能隙的特性,使得具矽量子點的矽材料可應用於發光元件、太陽能電池、光偵測器等。製作矽量子點常見的方法有濺鍍法、蒸鍍法、化學氣相沉積法,離子束濺鍍法等,其中濺鍍法因成本低、均勻性高且可在室溫下沉積,成為本論文使用的方法之一,而離子束輔助鍍膜則可增進薄膜品質。在本論文中我們從使用濺鍍法製作富矽氧化物薄膜研究開始,進而配合離子源輔助濺鍍法製作富矽氧化物薄膜與富矽氧化物/二氧化矽多層結構,探討其材料性質與光電特性。
    1.矽/二氧化矽 (Si/SiO2) 自組裝超晶格結構
    富矽氧化物 (SiOx, x≦2) 薄膜使用反應式濺鍍沉積,藉由穿透式電子顯微鏡觀察可發現富矽氧化物 (SiOx, 1.3≦x≦2) 薄膜在未退火時因具有壓應力使薄膜產生週期性的Si/SiO2結構,間距的週期可由調變鍍膜時氧氣流量控制。最後,利用Helmholtz自由能連續性方程說明週期性間隔與薄膜成份的關係。
    2.富矽氧化物薄膜
    利用低能離子束輔助濺鍍法製作具矽量子點的富矽氧化物薄膜,藉由穿透式電子顯微鏡的觀察與X光繞射分析,發現富矽氧化物薄膜在離子束輔助製程下能增加其結晶性,並可藉由控制離子束能量與鍍膜過程中的氧分壓,將奈米矽晶的尺寸與密度作一微調。離子束輔助濺鍍富矽氧化物薄膜在低氧分條件下,具有較明顯的相分離現象。由氧化實驗發現,富矽氧化物薄膜的位於長波長的光激螢光是由矽奈米晶的量子限制效應所造成。
    3.富矽氧化物/二氧化矽超晶格
    富矽氧化物/二氧化矽超晶格結構藉由低能量(<60 eV)氬離子束輔助濺射製備,探討其超晶格的材料性質與光激螢光特性。使用離子束輔助濺鍍法製作富矽氧化物薄膜,在退火後薄膜內矽量子點的密度與表面粗糙度皆增加。此外,富矽氧化物薄膜成份並不隨著離子源的加入而改變,但經離子束處理後的富矽氧化物/二氧化矽超晶格結構卻具有較明顯的相分離特性。薄膜中的E’缺陷增加而使得原本橘紅色的光致發光轉為白光。
    4.富矽氧化物/二氧化矽多層膜發光元件
    藉由調控薄膜沉積的基板溫度、矽量子點的尺寸分布、離子源處理的條件製作富矽氧化物/二氧化矽多層膜發光元件,並探討其發光效率與電子電洞的複合行為。高載子注入能障與矽量子點尺寸的縮小為富矽氧化物/二氧化矽多層膜發光效率增加的主因。若以離子束輔助濺鍍製作富矽氧化物/二氧化矽多層膜中二氧化矽薄膜,因載子注入能障增高使得載子在矽量子點中的侷限時間拉長,導致發光效率增加。最後,利用交流阻抗分析法探討不同頻率下元件的電性行為。

    Si-rich oxide (SRO) with embedded Si nanostructures has attracted considerable attention owing to pronounced quantum effect after annealing, regardless of the indirect band-gap nature of Si. The quantum-confinement properties of Si nanocrystals (NCs) have great potential for applications in light emission devices, photodetectors, and solar cells. Many methods have been reported to prepare the Si NCs embedded in SRO films, including sputtering, evaporation, and plasma-enhanced chemical vapor deposition. Among them, sputtering has several advantages superior to other methods such as low substrate temperature, low cost and good adhesion with substrates. Ion beam is another technique that has been developed to assist depositing optical thin films, particularly used together with evaporation to improve film quality. In this thesis, we prepared SRO films and SRO/SiO2 superlattices by sputtering and ion-beam-assisted sputtering (IBAS), and discus the material characteristic and optoelectric properties.
    1. Self-assembled Si/SiO2 superlattice
    This work involves as-prepared SiOx (x≦2) films that were deposited by reactive sputtering. The regular Si/SiO2 superlattices were self-assembled without post-annealing. The periodicity of Si/SiO2 superlattices was modulated by varying the oxygen flow rate, and was associated with x in SiOx in the range 2-1.3. Si/SiO2 superlattices were formed under compressive stress. The continuity equation of transport and the additional term in the Helmholtz free energy were used to explain the periodicity and the lower limit of the superlattices, respectively.
    2. Si-rich oxide films
    This study exploits the material and optical properties of Si NCs-embedded SRO films prepared by low-energy IBAS. Transmission electron microscopy and X-ray diffraction revealed that the IBAS improved crystallinity of the annealed SRO films. The size and density of Si NCs can be fine-tuned by ion-beam energy and oxygen partial pressure. The phase separation of IBAS-prepared SRO films was enhanced after annealing. This fact was particularly pronounced at low-oxygen partial pressure condition. Visible photoluminescence of the IBAS films was obtained, owing to the quantum confinement effect of Si NCs.
    3. Si-rich oxide/SiO2 superlattices
    This study presents the structure and luminescence properties of SRO/SiO2 superlattices in which the SRO layers were prepared by low-energy (<60 eV) argon ion-beam-assisted sputtering. Experimental evidence indicates that the density of the Si NCs in the SRO layer was increased by ion-beam treatment after annealing, increasing the surface roughness. Moreover, the stoichiometry of the as-prepared SRO layer was unchanged but the phase separation of the annealed SRO layer was enhanced by the ion-beam treatment, yielding visible white photoluminescence from the E’ centers and Si nanocrystals.
    4. Si-rich oxide/SiO2 superlattice LEDs
    The SRO/SiO2 superlattices LEDs were prepared by varying the structure, substrate temperature, and ion source treatment was reported. The electroluminescences of SRO/SiO2 multilayers were associated with the injection barrier height and Si dots size. The retention time of SRO/SiO2 superlattice deposited by IBAS was longer than that prepared by sputtering. Impedance spectroscopy analyses were to realize the electrical properties of materials and their interfaces.

    中文摘要 I Abstract III Acknowledgements VI Contents VIII Table Captions X Figure Captions XI Chapter 1 Introduction 1 Chapter 2 Self-assembled Si/SiO2 superlattices 10 2-1 Introduction 10 2-2 Experimental Procedures 10 2-3 Results and Discussion 11 2-3-1 TEM observation 11 2-3-2 XPS analyses 11 2-3-3 Stress analyses 12 2-3-4 Model 14 2-4 Summary 15 Chapter 3 Si-rich oxide films 23 3-1 Introduction 23 3-2 Experimental Procedures 23 3-3 Results and Discussion 24 3-3-1 TEM observation 24 3-3-2 Si NCs size and density 25 3-3-3 XRD analyses 26 3-3-4 PL spectra 27 3-4 Summary 27 Chapter 4 Si-rich oxide/SiO2 superlattices 42 4-1 Introduction 42 4-2 Experimental Procedures 42 4-3 Results and Discussion 43 4-3-1 XRD analyses 43 4-3-2 AFM observation 44 4-3-3 TEM observation 44 4-3-4 XPS analyses 45 4-3-5 PL spectra 46 4-4 Summary 47 Chapter 5 Si-rich oxide/SiO2 superlattice LEDs 58 5-1 Introduction 58 5-2 Experimental Procedures 58 5-3 Results and Discussion 59 5-3-1 Effects of SRO layers thickness on electroluminescence 59 5-3-2 Effects of deposited temperature on electroluminescence 61 5-3-3 Effects of IBAS on SRO layers 62 5-3-4 Effects of IBAS on SiO2 layers 64 5-3-5 AC impedance analysis 67 5-4 Summary 70 Chapter 6 Conclusions and future works 102 6-1 Conclusions 102 6-2 Future works 103 References 104

    1. A. Parisini, R. Angelucci, L. Dori, A. Poggi, P. Maccagnani, G. C. Cardinali, G. Amato, G. Lerondel, and D. Midellino, “TEM characterisation of porous silicon,” Micron, 31, 223-230 (2000).
    2. A. G. Cullis, and L. T. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature, 353, 335-338 (1991).
    3. X. L. Wu and F. S. Xue, “Optical transition in discrete levels of Si quantum dots”, Appl. Phys. Lett., 84, 2808-2810 (2004).
    4. N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett., 86, 1355-1357 (2001).
    5. D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett., 76, 539-541 (1996).
    6. T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3,” Appl. Phys. Lett., 88, 123102 (2006).
    7. M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattices,” Appl. Phys. Lett., 74, 2614-2616 (1999).
    8. K. Seino, J. M. Wagner, and F. Bechstedt, “Quasiparticle effect on electron confinement in Si/SiO2 quantum-well structures,” Appl. Phys. Lett., 90, 253109 (2007).
    9. N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett., 78, 2575-2577 (2001).
    10. G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett., 96, 263514 (2010).
    11. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nature Nanotechnology, 3, 174-178 (2008).
    12. G. R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” Appl. Phys. Lett., 97, 094306 (2005).
    13. M. G. Craford “Visible light-emitting diodes: past, present, and very bright future,” Mater. Res. Bull., 25, 27-31 (2000).
    14. G. Franzò, M. Miritello, S. Boninelli, R. Lo Savio, M. G. Grimaldi, F. Priolo, F. Iacona, G. Nicotra, C. Spinella, and S. Coffa, “Microstructural evolution of SiOx films and its effect on the luminescence of Si nanoclusters,” J. Appl. Phys., 104, 094306 (2008).
    15. Z. H. Lu, D. J. Lockwood and, J. M. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature, 378, 258-260 (1995).
    16. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach,” Appl. Phys. Lett., 80, 661-663 (2002).
    17. J. M. Shieh, Y. F. Lai, W. X. Ni, H. C. Kuo, C. Y. Fang, J. Y. Huang, and C. L. Pan, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer,” Appl. Phys. Lett., 90, 051105 (2007).
    18. E. C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. C. Park, and M. A Green, “Silicon quantum dot/crystalline silicon solar cells,” Nanotechnology, 19, 245201 (2008).
    19. S. K. Kim, B. H. Kim, C. H. Cho, and S. J. Park, “Size-dependent photocurrent of photodetectors with silicon nanocrystals,” Appl. Phys. Lett., 94, 183106 (2009).
    20. X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology, 20, 485703 (2009).
    21. R. J. Zhang, Y. M. Chen, W. J. Lu, Q. Y. Cai, Y. X. Zheng, and L. Y. Chen, “Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix,” Appl. Phys. Lett., 95, 161109 (2009).
    22. A. Hohl, T. Wieder, P.A. van Aken, T.E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess, “An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO),” J. Non-Crys. Solids, 320, 255-280 (2003).
    23. S. M. Schnurre, J. Gröbner, and R. S. Fetzer, “Thermodynamics and phase stability in the Si–O system,” J. Non-Crys. Solids, 336, 1-25 (2004).
    24. M. Zacharias and P. Streitenberger, “Crystallization of amorphous superlattices in the limit of ultrathin films with oxide interfaces,” Phys. Rev. B, 62, 8391-8396 (2000).
    25. N. A. E. Masry, M. K. Behbehani, S. F. LeBoeuf, M. E. Aumer, J. C. Roberts, and S. M. Bedair, “Self-assembled AlInGaN quaternary superlattice structures,” Appl. Phys. Lett., 79, 1616-1618 ( 2001).
    26. X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong, and W. D. Song, “Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition,” J. Appl. Phys., 97, 014913 (2005).
    27. J. M. Besson, E. H. Mokhtari, J. Gonzalez, and G. Weill, “Electrical Properties of Semimetallic Silicon III and Semiconductive Silicon IV at Ambient Pressure,” Phys. Rev. Lett., 59, 473-476 (1987).
    28. R.O. Piltz, J.R. Maclean, S. J. Clark, G.J. Ackland, P. D. Hatton, and J. Crain, “Structure and properties of silicon XII: A complex tetrahedrally bonded phase,” Phy. Rev. B, 52, 4072-4085 (1995).
    29. V. Domnich, Y. Gogotsi, and S. Dub, “Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon,” Appl. Phys. Lett., 76, 2214-2216 (2000).
    30. A. Kailer, Y. G. Gogotsi, and K. G. Nickel, “Phase transformations of silicon caused by contact loading,” J. Appl. Phys., 81, 3057 (1997).
    31. Z. Ming, K. Nakajima, M. Suzuki, K. Kimura, M. Uematsu, K. Torii, S. Kamiyama, Y. Nara, and K. Yamada, “Si emission from the SiO2/Si interface during the growth of SiO2 in the HfO2/SiO2/Si structure,” Appl. Phys. Lett., 88, 153516 (2006).
    32. S. C. Pandey, G. I. Sfyris, and D. Maroudas, “Theory of surface segregation in ternary semiconductor quantum dots,” Appl. Phys. Lett., 98, 091907 (2011).
    33. J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform System. III. nucleation in a two‐component incompressible fluid,” J. Chem. Phys., 31, 688-699 (1959).
    34. A. G. Cullis, L. T. Canham, P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys., 82, 909-911 (1997).
    35. V. Lehmann and U. Gösele, “Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett., 58, 856- 858 (1991).
    36. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., 57, 1046-1048 (1990).
    37. S. H. Hong, J. H. Park, D. H. Shin, C. O. Kim, S.-H. Choi, and K. J. Kim, “Doping- and size-dependent photovoltaic properties of p-type Si-quantum-dot heterojunction solar cells: correlation with photoluminescence,” Appl. Phys. Lett., 97, 072108 (2010).
    38. J. K. Kim, K. M. Cha, J. H. Kang, Y. Kim, J. Y. Yi, T. H. Chung, and H. J. Bark, “Area-selective formation of Si nanocrystals by assisted ion-beam irradiation during dual-ion-beam deposition,” Appl. Phys. Lett., 85, 1595-1597 (2004).
    39. Z. T. Kang, B. Arnold, C. J. Summers, and B. K. Wagner, “Synthesis of silicon quantum dot buried SiOx films with controlled luminescent properties for solid-state lighting,” Nanotechnology, 17, 4477-4482 (2006).
    40. T. Müller, K. H. Heinig, and W. Möller, “Size and location control of Si nanocrystals at ion beam synthesis in thin SiO2 films,” Appl. Phys. Lett., 81, 3049-3051 (2002).
    41. M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, “Resonant tunneling through a self-assembled Si quantum dot,” Appl. Phys. Lett., 70, 2291-2293 (1997).
    42. R. Hong, H. Qi, J. Huang, H. He, Z. Fan, J. Shao, “Influence of oxygen partial pressure on the structure and photoluminescence of direct current reactive magnetron sputtering ZnO thin films,” Thin Solid Films, 473, 58-62 (2005).
    43. M. C. Kim, S. Kim, S. H. Choi, and S. Park, “Anomalous light-induced enhancement of photoluminescence from Si nanocrystals fabricated by thermal oxidation of amorphous Si,” Appl. Phys. Lett., 91, 033111 (2007).
    44. A. Thøgersen, S. Diplas, J. Mayandi, T. Finstad, A. Olsen, J. F. Watts, M. Mitome, and Y. Bando, “An experimental study of charge distribution in crystalline and amorphous Si nanoclusters in thin silica films” J. Appl. Phys., 103, 024308 (2008).
    45. M Kulakci, U Serincan and R Turan, “Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation,” Semicond. Sci. Technol., 21, 1527-1532 (2006).
    46. O. Jambois, B. Garrido, P. Pellegrino, J. Carreras, A. Pérez-Rodríguez, J. Montserrat, C. Bonafos, G. BenAssayag, and S. Schamm, “White electroluminescence from C- and Si-rich thin silicon oxides,” Appl. Phys. Lett., 89, 253124 (2006).
    47. R. Huang, K. Chen, H. Dong, D. Wang, H. Ding, W. L., J. Xu, Z. Ma, and L. Xu, “Enhanced electroluminescence efficiency of oxidized amorphous silicon nitride light-emitting devices by modulating Si/N ratio,” Appl. Phys. Lett., 91, 111104 (2007).
    48. H. L. Hao, L. K. Wu, and W. Z. Shen, “Controlling the red luminescence from silicon quantum dots in hydrogenated amorphous silicon nitride films,” Appl. Phys. Lett., 92, 121922 (2008).
    49. Peter Sigmund, “Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets,” Phys. Rev., 184, 383-416 (1969).
    50. S. S. Zumdahl, Chemistry, 4th ed. (Houghton Mifflin, Boston), chap. 8.
    51. H. Nishikawa, E. Watanabe, D. Ito, M. Takiyama, A. Ieki, and Y. Ohki, “Photoluminescence study of defects in ion‐implanted thermal SiO2 films,” J. Appl. Phys., 78, 842-846 (1995).
    52. C. K. Tseng, M. C. M. Lee, H. W. Hung, J. R. Huang, K.Yu Lee, J. M Shieh, and G. R. Lin, “Silicon-nanocrystal resonant-cavity light emitting devices for color tailoring,” J. Appl. Phys., 111, 074512 (2012).
    53. G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett., 96, 263514 (2010).
    54. D. Di, I. Perez-Wurfl, L. Wu, Y. Huang, A. Marconi, A. Tengattini, A. Anopchenko, L. Pavesi, and G. Conibeer, “Electroluminescence from Si nanocrystal/c-Si heterojunction light-emitting diodes,” Appl. Phys. Lett., 99, 251113 (2011).
    55. Y. Berencén, J. Carreras, O. Jambois, J. M. Ramírez, J. A. Rodríguez, C. Domínguez, Charles E. Hunt, and B. Garrido, “Metal-nitride-oxide-semiconductor light-emitting devices for general lighting,” Opt. Express, 19, A234-A244 (2011).
    56. N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes,” Appl. Phys. Lett., 78, 2575 (2001).
    57. T.V. Torchynska and Yu. V. Vorobiev, Nanocrystals and quantum dots of group IV semiconductors (Stevenson Ranch, Calif.: American Scientific Publishers) chap.7.
    58. B. Berghoff, S. Suckow, R. Rölver, B. Spangenberg, H. Kurz,A. Sologubenko, and J. Mayer, “Improved charge transport through Si based multiple quantum wells with substoichiometric SiOx barrier layers,” J. Appl. Phys., 106, 083706 (2009).
    59. C. H., K. H. Kim, B. K. Kim, W. Kim, H. Ko, C. J. Choi, G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater., 22, 5058-5062 (2010).
    60. C. Chen, R. Jia, W. Li, H. Li, T. Ye, X. Liu, M. Liu, S. Kasai, H. Tamotsu, and Nanjian Wu, “Enhanced charge storage characteristics of silicon nanocrystals fabricated by electron-beam coevaporation of Si and SiOx(x = 1 or 2),” J. Vac. Sci. Technol. B, 27, 2462-2467 (2009).
    61. N. M. Park, S. H. Jeon, H. D. Yang, H. Hwang, and S. J. Park, S. H. Choi, “Size-dependent charge storage in amorphous silicon quantum dots embedded in silicon nitride,” Appl. Phys. Lett., 83, 1014-1016 (2003).
    62. B. H. Lai, C. H. Cheng, and G. R. Lin, “Multicolor ITO/SiOx/p-Si/Al light emitting diodes with improved emission efficiency by small Si quantum dots,” J. Quantum Electron., 47, 698-704 (2011).
    63. I. Crupi, D. Corso, S. Lombardo, C. Gerardi, G. Ammendola, G. Nicotra, C. Spinella, E. Rimini, and M. Melanotte, “Memory effects in MOS devices based on Si quantum dots,” Mater. Sci. Eng., C, 23, 33-36 (2003).
    64. S. Oda, , S.Y. Huang, M.A. Salem, D. Hippo, H. Mizuta, “Charge storage and electron/light emission properties of silicon nanocrystals,” Phys. E, 38 59-63 (2007).
    65. B. Benrabah, A. Bouaza, A. Kadari, M.A. Maaref, “Impedance studies of Sb doped SnO2 thin film prepared by sol gel process,” Superlattices Microstruct., 50, 591–600 (2011).
    66. J. C. C. Abrantes, J. A. Labrincha, J. R. Frade, “An alternative representation of impedance spectra of ceramics,” Mater. Res. Bull., 35, 727-740 (2000).
    67. G. Z. Liu, C. Wang, C. C. Wang, J. Qiu, M. He, J. Xing, K. J. Jin, H. B. Lu, and G. Z. Yang, “Effects of interfacial polarization on the dielectric properties of BiFeO3 thin film capacitors,” Appl. Phys. Lett., 92, 122903 (2008).

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE